
6.111 FPGA Voxel Ray Tracer

Cece Chu and Parker Huntington

December 5, 2021

1 Introduction

The goal of this project was to create an integer based ray tracer. The basic
operating principle of this device is that there exists a scene built up of unit
voxels with side lengths of 216. In order to generate the image corresponding to
the camera, a ray is sent out from the camera position through an imaginary
pixel of the camera. This ray is propagated through space until it encounters a
solid object, which determines its final color.

In order to do this, we needed to create a ray tracer, but also a supporting
memory and video system in order to run the ray tracer and display the final
image.

2 Ray Tracer (Parker)

2.1 Architecture

The ray tracer can broken down into three modules. The first module is the
‘Ray Config’ module which interacts with the configuration port of the ray
tracer to configure and run the rest of the ray tracer. The operation of the
configuration module is described in detail in 2.3. The ‘Ray Generator’ is run
by the configuration module and is responsible for generating the camera rays
and calculating which memory address the resultant pixel should be saved to.
Finally, these generated camera rays are passed off to one of any number of ‘Ray
Unit’ modules which propagate the ray and calculate their final color.

2.1.1 Ray Generator

The ray generator takes in the directional camera information, frame dimen-
sions, and frame address from the configuration module, then generates one ray
direction per pixel along with the pixel address. The pixels are generated from
left-to-right then top-to-bottom, the same order as the pixels are displayed on
the screen. The resultant ray direction may be normalized by the ray generator
if the ‘normalize’ signal is set. The normalization is performed using a newton’s
method approach using two passes (Fig. 2).

1

Figure 1: The configuration port drives the ‘Ray Config’ module which controls
the rest of the system. The ‘Ray Generator’ feeds rays to the ‘Ray Unit’s which
interact with the rest of the system through the memory bus.

def newtons_method(x, y, v):

norm = (x**2 + y**2 + v**2) >> 16;

generate an initial guess

bits = 16

toShift = bits - int(log(norm, 2))

y = 1 << bits + (toShift // 2)

for newton_step in range(2):

three in fixed point

three = 3 << bits

convert y back to f16

y = y * (three - ((n*y)*y)) >> bits + 1

15//16 safety margin

return y * 15//16

Figure 2: Python description of the normalization method used by the ray
generator.

2

Figure 3: Ideally, the ray normalization would result in the ray being 15/16 in
order to keep the norm small enough to prevent integer overflow.

The normalization algorithm helps to ensure that small vectors are scaled
up to improve performance and ensure that the ray propagation can proceed
correctly.

While ideally, the normalization algorithm would increase the maximum field
of view, it performs best with smaller vectors as can be seen in Fig. 3. Un-
fortunately, using small vectors means that the angular resolution for camera
rotations is decreased. Thus, under most cases it is recommended that a mod-
erate FOV is used with prescaled camera vectors and no normalization (Section
2.3.3).

2.1.2 Ray Unit

The ray unit is the basic unit responsible for taking a camera ray, propagating it,
then calculating the final color that corresponds to the rays pixel. This process
can be broken up into three steps. First, the ray unit takes the initial ray
position and looks up the leaf node properties corresponding to that position.
This gives the leaf node bounding box as well as the material information. If
the material is empty, then the ray is propagated until it is just outside of the
bounding box. After this, the ray unit returns back to step one. If the material
isn’t empty, then the ray unit writes the final pixel value back to memory.

In order to make this process easier, the ray unit contains two submodules.
The ‘RayMemory’ submodule is used to perform the material lookup as well as
the pixel write operation, while the ‘RayStepper’ submodule is used to propagate
the ray. The ray unit then contains a top level state machine that is used to
control the other two modules.

3

2.1.3 Ray Memory

The ray memory module performs material lookups and pixel write operations.
In order to look up a material. The ray memory module queries the root node of
the octree. Using the MSB of the position vector, the correct octant is selected,
and looked up in the tree. This process is repeated until a leaf node is found. If
the leaf node represents material 0, then the ray memory module indicates that
the position is empty, otherwise it looks up the material and returns it.

Additionally, the ray unit may look up the background material that is used
for out of bounds rays, which is simply the first item in the material table.

2.1.4 Ray Stepper

The ray stepper is responsible for propagating the ray through space. In order
to do this a simple binary search algorithm is used. The initial position is loaded
into an accumulator vector while the direction is scaled up so that it is at least
longer than the maximum length of the bounding box. Next the accumulator
position is added to the direction vector. If the resulting value is within the
boundary box, then the sum is committed to the accumulator. If the position is
one unit outside of the bounding box, then that position is returned. Otherwise,
the change isn’t committed to the accumulator register.

As long as the ray tracer hasn’t returned it will repeat the previous steps
every cycle while bisecting the direction vector each time. An important problem
to realise with this algorithm, however, is that it isn’t guaranteed to converge
when working with positive vector components. This is due to the fact that
when the vector is bisected, it is rounded down and the binary search is no
longer guaranteed to converge. In order to prevent this form happening, an
extra bit is stored in the direction vector to represent the half digit. If the
direction component is positive, then this will be used to round up the vector
during the computation.

2.2 Connections and Usage

The top level ray tracer module is fairly simple in terms of the ports that it
exposes. The ‘clock’ and ‘reset’ ports of provide the clock input and an active
high reset for the entire ray tracer. The interrupt port signals that the ray tracer
is no longer busy. Note, however, that the ray tracer can be ready to render a
new frame earlier. It is possible to have multiple frames being rendered at the
same time in the ray tracer, however, it is currently difficult to distinguish when
a frame is finished, so this usage is discouraged.

The ray tracer also exposes two memory ports, a slave port and a master
port. The slave port is used to access the configuration registers inside of the
ray tracer. The memory configuration base address is set when instantiating the
ray tracer module through the ‘CONFIG ADDRESS’ parameter and occupies
32 address locations in the slave address space. The master port is used by the
ray tracer to both request scene information and to set the pixels in the frame

4

Offset Value
0x00 Status
0x01 Material Address
0x02 Tree Address
0x03 Frame Address
0x04 Camera q̂
0x07 Camera v̂
0x0A Camera x̂
0x0D Camera ŷ
0x10 Frame width
0x11 Frame height

Table 1: The offset of the base address is given for each of the configuration
values.

buffer. The ray tracer occupies id in the master is space. The base master id is
set by the ‘MASTER ID BASE’ parameter and spans however many ray units
that are inside of the ray tracer. The ray tracer master doesn’t need access to
the slave port, and as such they can be on separate buses.

2.3 Configuration

The status register is used to both set/ready the control signals and get the ray
tracer status.

2.3.1 Configuration Register (0x00)

reserved SRBFR

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

N

The start field ‘S’ is a write only field that is used to start the ray tracer by
writing a 1 to it. The ready field ‘R’ is a read only field that indicates whether
or not the ray tracer is ready to start a new frame, but doesn’t indicate that
the last frame is finished. The busy signal ‘B’ indicates whether or not the ray
tracer is currently working on a frame.

The flush field ‘F’ is a write only field that is used to flush any cached scene
information from the ray tracer. This field should be asserted after any changes
to the scene information that the ray tracer is pointing to ensure that all of the
data will be up to date during the next render.

The reset field ‘R’ is used to reset the entire ray tracer. This should be
performed in order to do a soft reset on the system. Care should be taken to
flush the memory bus afterwards, especially if the ray tracer was operating, to
ensure any in route requests are flushed from the system and don’t cause the
memory bus to deadlock.

5

The normalization control field ‘N’ is a read/write field used to turn on and
off the camera vector normalization. It is recommended that this be left off.

2.3.2 Address Registers (0x01 - 0x03)

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

address[31:8]

As the address size of the ray tracer is 32 bits while the data is only 24 bits,
the address configuration registers only specify the upper 24 bits of the address
while the lower 8 bits are set to 0. Thus the frame buffer, material table, and
octree must be aligned to aligned to the nearest 1024 in the PS address space.

2.3.3 Vector Registers (0x04 - 0x0F)

Each vector quantity in the ray tracer is specified by a set of three 16-bit vec-
tor registers. Each set of three registers is organized so that the x-coordinate
is specified first (lowest offset), then the y, and z components. All of the vec-
tor quantities in the ray tracer configuration relate to the camera description:
position (q̂), direction (v̂), x-axis (x̂), and y-axis (ŷ).

reserved

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

unsigned int16

The camera position is an unsigned vector, and is used to describe the po-
sition of the camera in the scene, where the camera position can be any 16-bit
3-vector.

reserved

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

signed int16

The other camera quantities are signed vectors. The v̂ quantity gives the
normal vector to the camera plane, or the direction that the camera is pointing.
The x̂ value is the vector that describes how far to change the camera direction
in order to move right 1 pixel on the x-axis. The ŷ value similarly describes the
direction to move in order to move up one pixel on the y-axis. While the x̂, ŷ,
and v̂ values should be orthogonal in order to describe a ‘normal’ camera they
can be changed to skew the camera image.

The x̂ and ŷ values should have the same magnitude in order to ensure
that the final image isn’t stretched in one direction. The field of view of the
camera can be adjusted by changing the relative x̂, ŷ to v̂ magnitude. In order to
prevent overflow inside the ray tracer while it is generating the rays, (1) should
be satisfied. In order to retain angular resolution while rotation the camera, (1)
should be as close to saturating as possible, otherwise the x̂ and ŷ vectors will

6

be so small, that there isn’t enough precision to rotate them without causing
the camera to skew. ∣∣∣∣v̂ +

width

2
x̂ +

height

2
ŷ

∣∣∣∣ < 215 − 1 (1)

Due to optimizations in the ray stepper that are discussed elsewhere, the ray
must also meet the minimum size bound given by (2) where n is the minimum
depth of the octree being rendered.

|v̂| > 215−n (2)

2.3.4 Frame Dimension Registers (0x10 - 0x11)

reserved

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

frame dimension

The dimensions of the frame buffer are described by the read/write frame
dimension registers which hold the dimension as an unsigned 12-bit value.

2.4 File Format

The ray tracer scene information is split into two sections. The tree section is
used to divide up the space in the scene into regions which are labeled with
a material. The material table is then used to look up the properties of that
region of space.

The tree is given as a list of nodes where each node represents a subdivision
in space. The node contains 8 24-bit entries where the offset of the entry gives
the octant that it specifies. This offset is given by

offset = z ∗ 4 + y ∗ 2 + x, (3)

where x, y, and z are either 0 or 1. Each entry can either specify another
node, or a material. An entry is a material when the upper 16 bits are all 1, as
seen below.

0xffff

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

material

In the special case that the material is 0, the space is considered to be
empty. Otherwise, material is the index used to look up the material in the
material table. If the entry isn’t a material, then it represents another node
and is interpreted as a 24-bit number giving the index of the index of next node
(Fig. 4). The root node of the tree is always taken to be the node at index
0. The tree should always form an acyclic graph so that infinite loops aren’t
encountered.

7

root node

0xffff_01

0xffff_01

0xffff_01

0xffff_01

1

0xffff_00

0xffff_00

0xffff_00

node 1...

Figure 4: Example root node. All of the octants on the bottom (z-axis) are
set to material 1, while on top everything is empty space except for the lowest
x, y = 0 octant which is described by node 1.

The material table is a 256-element list of 24-bit material entries. The
material at index 0 is a special case that represents the background used when
a ray is detected to have gone out of bounds. each material entry specifies the
color of the material as seen below.

23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

blue green red

2.5 Implementation Process

In order to implement and test the ray tracer, the system was slowly built up in a
comprehensive simulation environment. First I would develop the specification
for a new systemverilog module, then add a verilator command in order to
compile it and check for syntax errors. The verilated output was then wrapped
in a c++ class that was used to add convenience functions so that the system
wouldn’t be hard to use by other code. This wrapper could then be called by
test cases, and sometimes used by a routine to simulate the final image output
of the ray tracer. This proved to be a very effective development cycle for the
ray tracer and allowed me to do a lot of development on the ray tracer before the
memory system was ready. Additionally, I could quickly test the code without
putting on the hardware and was able to find many bugs, so much so that the
ray tracer presented no problems when put onto the actual fpga (besides critical
path issues that were fixed by lowering the clock speed).

In the future I certainly want to build on this development style. I would,
however, want to experiment around with some alternatives to systemverilog to
see if there is anything that produces cleaner code.

8

Figure 5: Block Diagram of Display Pipeline.

3 Display system (Cece)

3.1 Overview/Motivation

The goal of the display subsystem was to be able to display the frame buffer
on an external monitor. While the task of displaying an image is quite similar
to what we did in the labs during the semester, the task at hand for our final
project was different in some significant aspects. First, there is the difference in
pixel generation. Whereas in the labs we generated pixels either combinationally
or from BRAM, in this project due to the size and resolution of the image we
needed to read out pixels from the frame buffer in DRAM. Second, there is the
difference in video format. The Pynq board we used does not have VGA output,
instead it only supports HDMI.

The tricky part of pixel generation was the need to be able to sequentially
read out pixel values from DRAM fast enough to meet the speed requirements
at our given resolution. For example, in order to display a 720p (1080 x 720
pixels), 8-bit RGB (24 bits per pixel) image at 30fps, we would need to supply
a minimum of 30 * 1080 * 720 * 24 = 560 Mbits per second. The high data rate
is the reason why we chose to use the Pynq Z2 board instead of the Nexys 4
DDR, since it has a faster DRAM. In order to actually achieve this rate, we read
out the pixels via the built in HP AXI ports on the Zynq processing cores that
come with the Pynq system and provide access to the builtin memory controller.
The various IPs that made up the display pipeline were all from the IP catalog,
so I will not write about the internal implementations but the function and
configuration of each is briefly outlined below and connectivity is shown in the
diagram.

3.2 Hardware Components

3.2.1 Video Frame Buffer Read IP

The Video Frame Buffer Read IP is essentially serves as a Direct Memory Access
(DMA) module. It requests data from DRAM on the AXI interface and outputs

9

pixel data as an AXI stream. Since we didn’t want to have to deal with offset
addresses, each pixel took up 32 bits instead of 24, aka RGBX8 format where
one byte is empty. Accordingly, we had to customize the IP to support a RGBX8
data format. Frame size and data format were configured in software.

3.2.2 Video Timing Controller IP

The Video Timing Controller (VTC) IP provides VGA timing signals (hsync,
vsync, blank) given an input clock. The default frame size is set in the hardware
but frame size was also configurable via software. The VTC supports both
timing generation and detection (if given an input video stream), but for our
purposes we just used the generation capability.

3.2.3 AXI Stream to Video Out IP

The AXI Stream to Video Out IP takes in the AXI Stream pixels from the
Video Frame Buffer Read and the timing signals from the VTC and outputs
valid VGA signal.

3.2.4 RGB to DVI IP

The RGB to DVI IP converts the VGA video signal from the AXIS-Video Out
IP into HDMI. Its outputs were connected to the HDMI ports specified in the
XDC file. This IP did not come with the Vivado WebPack and had to be
downloaded from the Vivado Master Library.

3.2.5 Clock Domain

All of these IPs on the display pipeline were the same clock domain that is
separate from the clock domain of the ray tracing logic. This clock was provided
by a second PL fabric clock generated in the Zynq processing system and the
frequency was configurable in software to adjust the frame rate for different
frame sizes.

3.3 Software Configuration

Since one of our stretch goals was to be able to support different resolutions dy-
namically (i.e. without having to regenerate the bitstream), this involved having
to be able to configure the VTC and Video Frame Buffer Read in software. Both
of the IPs were connected as memory-mapped slaves to the Processing System,
so we could configure to get different resolutions by writing to the appropriate
control registers in the Jupyter Notebooks. A table of different resolutions and
the values that had to be written to each register is below.

10

3.4 Implementation Process/Challenges

The display pipeline was developed entirely separately from the ray tracer and
memory subsystems. The goal for the display subsystem was essentially to be
able to set a frame buffer address and resolution in the Jupyter Notebook and
get a valid HDMI output. The idea was that to the display, it would not make
any difference if the pixels were written into the frame via the ray tracer or
in python using the PS, so we would be able to seamlessly integrate the two
systems together once both were working.

I started by testing the display pipeline present in the Pynq base overlay
according to the documentation. This essentially verified that we would be able
to get sufficient data bandwidth from the DRAM. However, the block diagram
for the base overlay was extremely complex and had many more components
than was necessary for our application, therefore we would need to recreate
our own display pipeline. The next step was to create a simplified version of
the pipeline described above except to replace the Video Frame Buffer Read
module with a Test Pattern Generator. The reason for doing this was that
the Test Pattern Generator was a much simpler and standalone IP than the
Video Frame Buffer Read, not requiring any special software configuration and
not needing to interact with DRAM. Thus, I used this pipeline to verify the
functionality of the downstream modules – the AXI Stream to Video Out and
the RGB to DVI, as well as the topology of the hardware.

Getting the pipeline functional was quite challenging because it was quite
opaque and difficult to debug the software settings. I used an AXI GPIO module
to read the “locked” signal from the AXI Stream to Video Out module to help
indicate whether it was able to generate a valid signal. I then had to read
through a lot of documentation and Xilinx-provided C driver code to figure out
the essential registers to set, i.e. generate the table above. I first just got a single
resolution working by configuring the Video Frame Buffer Read IP and setting
the VTC resolution in Vivado as a default, and once that worked I then went on
to figuring out the configurations for the VTC. The specific numbers for hsync,
vsync and other registers I got from the “Customize IP” window in Vivado. This
whole process ended up taking many hours because I was really only able to
see the individual status registers and the locked signal, so whenever something
didn’t work I had to go back to the documentation and example drivers and
figure out what was missing. Ultimately, for example, I realized that I had set
all the correct registers for changing the VTC frame size but needed to set a
certain bit in the control register in order to update the settings. This process
ended up teaching me how to read through dense documentation and driver
code and extract the necessary information.

11

4 Memory System (Cece)

4.1 Overview/Motivation

The overarching goal of the memory system is to handle read and write requests
to memory. In our system, the masters that can initiate reads and writes are
the Ray Tracer and the Computer Interface, which is controlled by the Zynq
PS. The slaves that are the memory elements that service the requests are
the DRAM, BRAM, and the Ray Tracer Configuration Register. The tasks
of the various modules can be broken down into arbitrating between different
requests to avoid bus contention, routing requests to the appropriate slave and
doing address space conversion, and interfacing with AXI protocol. Arbitration
and address space conversion are necessary since we have multiple masters and
slaves; interfacing with AXI is necessary since the BRAM and DRAM both
use AXI interfaces, however for our custom modules we chose to use a simpler
protocol described below.

4.2 Memory Access Protocol

Our internal protocol was sort of like a simpler version of AXI. We had separate
channels for Master-to-Slave (MS, for requests) and Slave-to-Master (SM, for
read data). Each had the signals Valid, Taken, Master ID (6 bits), and Data (24
bits), and the MS channel had additional Write and Address (32 bits) signals.
Master ID specified which master was making the request for the MS channel
and the original requester of the read request for the SM channel. Data was
either the data to be written for the MS channel or the returned data for the
SM channel. The Valid is set high to signal a valid request on the MS channel
or valid read data on the SM channel, and Taken is set high to signal that
the request or data was accepted by the receiver. A transaction is considered
completed when both Valid and Taken are high. A slave takes any valid request
it receives, but a master only takes read data when the Master ID matches its
own. Accordingly, MS requests are routed to a single destination, but SM data
can be broadcast to all the masters on the bus.

4.3 Hardware Components

4.3.1 Crossbar Module

The crossbar is responsible for arbitrating between the two masters on the MS
channel and between the three slaves on the SM channel. It also routes requests
from the MS channel to the correct slave based on the address. Our address
space was divided up as follows: addresses 0x0-0x100 were reserved for the
Ray Tracer Configuration Register, addresses 0x100-0x800 were reserved for
the BRAM, and addresses greater than 0x800 were reserved for DRAM. After
checking the addresses incoming from the master to see which slave the request
should be routed to, the base address was subtracted from the incoming address

12

Figure 6: Block Diagram showing architecture of memory system. White arrows
represent internal Valid/Taken protocol, gray arrows represent AXI or AXILite
protocol.

13

MRU 1st Priority 2nd Priority 3rd Priority
A B C A
B C A B
C A B C

Table 2: Round Robin style arbitration order given MRU.

before being passed to the slave. For example, address 0x104 from a master
corresponds to address 0x4 in the BRAM.

Arbitration for the MS channel was done using a Least Recently Used (LRU)
scheme on a per-slave basis. If there was only one master trying to request for
any slave at a given time (meaning that its valid signal was high and the address
was within that slave’s address space), that request would simply be passed to
the slave. In the case of contention, i.e. both masters trying to read or write
from the same slave, the arbitration logic grants priority to the Least Recently
Used (LRU) master for that slave. The LRU state is maintained in a sequential
block with a register such that whenever a transaction is completed by one
master, i.e. Valid and Taken are both high on the MS channel, the LRU is
set to the other master. Apart from the LRU logic, all other arbitration and
routing logic is combinational so as not to introduce any cycles of latency.

Arbitration on the SM channel is done using a round robin scheme. The
Most Recently Used (MRU) slave is the slave that has most recently completed
a transaction, i.e. had valid and taken both high. At any given point, the
priority in an arbitration scenario is granted based on the table below, where A
= Ray Configuration Port, B = BRAM, and C = DRAM. Like the MS channel,
the MRU logic is sequential and the routing logic is combinational so as not to
introduce latency.

4.3.2 Binary Arbiter Module

The Binary Arbitrator was sort of a simplified version of the crossbar module.
On the MS channel, it provided arbitration between two masters for accessing a
single slave port using the LRU scheme described for the crossbar’s MS channel.
On the SM channel, it simply passed from the slave port to both master ports.
It was used internally in the Ray Tracer for arbitrating between different Ray
Units’ memory requests in a tree structure.

4.3.3 BusToAXI Module

The BusToAXI module served as a “translator” between our internal Ready/Taken
protocol and the AXI protocol used by the DRAM. In the system diagram, it
resided between the internal memory bus on the crossbar and the GP AXI port
on the Zynq PS. The challenge of this module was to figure out how to set the
more than 30 signals on the AXI interface to be able to properly send requests
and receive DRAM data.

14

Luckily, our protocol was fairly similar to AXI in principal, since AXI uses
ready/valid signals on each of its channels. Since AXI has separate read and
write channels, we routed our msValid/msTaken signals to the read or write
valid/ready signals depending on the value of our msWrite signal. Since we
used a 24 bit data bus but the DRAM AXI interface had a 32 bit data but, we
simply padded the upper byte with zeros.

Likewise, the msAddress was simply passed to both the read and write ad-
dresses. The DRAM AXI interface also had the nice property of supporting IDs,
which were functionally the same as our Master IDs, so we were able to pass
msID to wid/arid (write ID and read address ID) and rid (read ID) to smID.
Given the assignments of all those basic signals, there were still many other pe-
ripheral signals used for supporting bursting, caching, and other advanced AXI
functionalities which we did not need but still needed to set properly. The full
assignment of values, generated after reading the AXI specification, the Zynq
DRAM Controller datasheet, and some trial and error, is listed below. See also
the verilog for thie module in the Appendix.

4.3.4 BusToAXILite Module

The BusToAXILite module was functionally very similar to the BusToAXI mod-
ule except that it served as the interface between our internal protocol and the
BRAM Controller, which had the option of using AXI Lite. AXI Lite does not
support bursting or caching, so there are far fewer signals to deal with. The
core signals are translated in the same way as above, the primary difference
being that IDs are not supported in AXILite. However, since the BRAM has a
read latency of 1 cycle, we were able to support master IDs simply by writing
the msID into a register whenever there was a read request and wiring smID to
the contents of that register. The full table of AXILite signals is summarized
below.

4.3.5 BRAM Controller and Block Memory Generator IPs

These two IPs actually generated the block memory and created the AXILite
interface for it. The block diagram showing the connections of these IPs is in
the figure below. Since we had the Block Memory Generator connected to the
controller, we were able to set the depth of the BRAM using Vivado’s Address
Editor.

4.4 Implementation Process/Challenges

I began the implementation process by writing the Binary Arbitrator module
in SystemVerilog since it was a good way to make sure I understood how our
internal protocol worked and also relatively easy to verify with a simulation
test bench. I then worked on the BusToAXILite module to interface with the
BRAM. Due to the relatively small number of extraneous AXILite signals, this
was relatively easy to get working in simulation, and I was able to read and

15

Signal Direction BusToAXI Assignment AXILite?
arready SM msTaken = write ? awready && wready : arready Y
awready SM msTaken = write ? awready && wready : arready Y
bvalid SM ignored Y
rlast SM ignored N
rvalid SM smValid Y

wready SM msTaken = write ? awready && wready : arready Y
bresp SM ignored Y
rresp SM ignored Y
bid SM ignored N
rid SM smID N

rdata SM smData Y
arvalid MS !write && msValid Y
awvalid MS write && msValid Y
bready MS 1 Y
rready MS smTaken Y
wlast MS write && msValid N
wvalid MS write && msValid Y
arburst MS 0 N
arlock MS 0 N
arsize MS 3’b010 N

awburst MS 2’b01 N
awlock MS 0 N
awsize MS 3’b010 N
arprot MS 2’b01 Y
awprot MS 0 Y
araddr MS msAddress Y
awaddr MS msAddress Y
arcache MS 0 N
arlen MS 0 N
arqos MS 0 N

awcache MS 0 N
awlen MS 0 N
awqos MS 0 N
arid MS msID N
awid MS msID N
wid MS msID N

wdata MS msData Y
wstrb MS 4’b1111 Y

Table 3: AXI and AXILite signals.

16

Figure 7: Simplified memory system with only DRAM.

write data. This first iteration of the module, however, only had the useful
ready, valid, address, data, etc signals broken out and each wire was connected
manually in the block diagram. After the full BusToAXI module was written, I
ended up rewriting the BusToAXILite module to include all of the AXILite sig-
nals, even the unused outputs, so that Vivado recognized and bundled together
the wires as an interface on the block diagram.

Getting the BusToAXI module to work was quite challenging, especially
since we were unable to simulate DRAM. After separate failed attempts, Parker
and I sat down together and wrote an initial version of the module and tested
it using the Pynq framework with the Memory Master Computer Interface. We
were able to get it to work but discovered some strange behavior with lagging
read requests and only being able to write to 64 bits at a time rather than 32
bits. These issues were eventually fixed with adjustments to the Memory Master
state machine itself and by using the GP instead of the HP ports, which have
slightly different protocols.

For integrating the various components, we started with a simplified memory
architecture where the frame buffer, octree, and materials table were all stored in
DRAM. This eliminated the need for a Crossbar, since the Computer Interface
could be connected directly to the Ray Tracer Configuration Port, and the Ray
Tracer could directly interface with the DRAM via the BusToAXI module. (see
the diagram below.) Using this structure, we were able to verify the functionality
of the Ray Tracer with the Display Pipeline. At this point, we had a functional,
though simplified system.

I then moved to integration of the full system with the BRAM. The goal
of this was to move some of the data accesses to BRAM since BRAM is faster
than DRAM. Our original intent was to have both the materials table and octree
stored in BRAM, however it turned out that the maximum amount of BRAM
available on the FPGA, 128K, was not sufficient to hold the octree for larger
models, so we just stored the materials table in BRAM. This also meant we
could decrease the size of the BRAM – the final bitstream we used had 1024
bytes but the table was only 256 bytes so we theoretically could have shrunk the
BRAM down to 256 bytes. On the software side, we wrote the material table
into BRAM through the memory master and crossbar and set the material
table address in the Ray Tracer Configurations to be the base address of the
BRAM (0x100). This resulted in a speed improvement of about 20% compared
to having everything in the DRAM.

17

5 Computer Interface (Parker)

In order to configure our system and run it, we needed an interface that could
be used by the computer in order to access our custom memory bus as well as
driver software to automate it.

5.1 Memory Master

The memory master module allows arbitrary read and write commands on our
custom memory bus from the computer. This allows us to configure the ray
tracer and the BRAM, or even inspect and clear out the bus in the event of
an error. The module provides a standard memory bus master interface and is
controlled by a 32 bit input port, and reads information back via a 32 bit output
port. The input is split up, with the upper 8 bits representing a command value,
and the lower eight representing a field value for each command.

The memory master essentially works by allowing the computer to configure
internal registers setting the master ID, as well as all of the parameters related
to any memory request. Once a memory request has been formed, the request
can be queued to send. Once a request is queued, the memory master will
indicate that there is a pending request until the bus has sent the request.
Responses to the memory module are handled by taking the response and storing
it into registers that can be read from later. A response will only be received
if the master ID matches the one configured by the user. A user can, however,
sweep the master ID parameter in order to catch any responses on the bus
corresponding to master IDs in that range. Once a response has been read,
another can not be read until the read data is cleared.

The easiest way to use the memory master module is to connect its 32 bit
input and output ports to an axi gpio channel’s input and output ports.

6 Appendix

6.1 BRAM Wrapper bd.sv

module BRAM_Wrapper_bd #(

parameter MASTER_ID_WIDTH=8,

parameter ADDRESS_WIDTH=32,

parameter DATA_WIDTH=24,

parameter BRAM_ADDRESS_WIDTH=15,

parameter BRAM_DATA_WIDTH=32

)(

input clk,

input rst,

MemoryBus.Slave bus,

output logic[BRAM_ADDRESS_WIDTH-1:0] awaddr,

output logic awvalid,

18

input awready,

output logic [BRAM_DATA_WIDTH-1:0] wdata,

output logic wvalid,

input wready,

output logic[BRAM_ADDRESS_WIDTH-1:0] araddr,

output logic arvalid,

input arready,

input [BRAM_DATA_WIDTH-1:0] rdata,

input rvalid,

output logic rready,

output logic [2:0] awprot,

output logic [2:0] arprot,

output logic bready,

output logic [3:0] wstrb,

output logic rstb

);

logic[MASTER_ID_WIDTH-1:0] id_fifo[3:0];

logic[1:0] fifo_count;

logic msValid_prev;

logic rvalid_prev;

// bram_wrapper bram (

// .S_AXI_0_araddr(araddr),

// .S_AXI_0_arprot(arprot),

// .S_AXI_0_arready(arready),

// .S_AXI_0_arvalid(arvalid),

// .S_AXI_0_awaddr(awaddr),

// .S_AXI_0_awprot(awprot),

// .S_AXI_0_awready(awready),

// .S_AXI_0_awvalid(awvalid),

// .S_AXI_0_bready(bready),

// .S_AXI_0_bresp(),

// .S_AXI_0_bvalid(),

// .S_AXI_0_rdata(rdata),

// .S_AXI_0_rready(rready),

// .S_AXI_0_rresp(),

// .S_AXI_0_rvalid(rvalid),

// .S_AXI_0_wdata(wdata),

// .S_AXI_0_wready(wready),

// .S_AXI_0_wstrb(wstrb),

// .S_AXI_0_wvalid(wvalid),

// .rsta_busy_0(rsta_busy),

// .s_axi_aclk_0(clk),

// .s_axi_aresetn_0(!rst));

assign rstb = !rst;

19

assign arprot = 0;

assign wstrb = 4’b1111;

assign awprot = 0;

assign bready = 1;

assign awvalid = bus.msValid && bus.msWrite;

assign wvalid = bus.msValid && bus.msWrite;

assign awaddr = {bus.msAddress[BRAM_ADDRESS_WIDTH-3:0], 2’b0};

assign wdata = {8’b0, bus.msData};

assign arvalid = bus.msValid && (!bus.msWrite);

assign araddr = {bus.msAddress[BRAM_ADDRESS_WIDTH-3:0], 2’b0};

assign rready = bus.smTaken;

assign bus.msTaken = bus.msWrite ? wready: arready;

assign bus.smValid = rvalid;

assign bus.smData = rdata[23:0];

assign bus.smID = id_fifo[0];

logic pushFifo;

logic popFifo;

assign pushFifo = bus.msValid && !bus.msWrite && bus.msTaken;

assign popFifo = rvalid && bus.smTaken;

always_ff @ (posedge clk) begin

rvalid_prev <= rvalid;

msValid_prev <= bus.msValid;

if (rst) begin

fifo_count <= 0;

rvalid_prev <= 0;

msValid_prev <= 0;

end else begin

if (pushFifo) begin

if (popFifo) begin

bus.smID <= id_fifo[0];

for(integer i = 0; i < fifo_count; i = i+1) begin

id_fifo[i] <= id_fifo[i+1];

end

id_fifo[fifo_count] <= bus.msID;

end else begin

id_fifo[fifo_count] <= bus.msID;

fifo_count <= fifo_count + 1;

end

end else begin

20

if (popFifo) begin

id_fifo[0] <= id_fifo[1];

id_fifo[1] <= id_fifo[2];

id_fifo[2] <= id_fifo[3];

fifo_count <= fifo_count - 1;

end

end

end

end

endmodule

6.2 BinaryArbiter.sv

module BinaryArbiter #(

parameter MASTER_ID_WIDTH=8,

parameter ADDRESS_WIDTH=32,

parameter DATA_WIDTH=24

)(

input clk,

MemoryBus.Slave sbus0,

MemoryBus.Slave sbus1,

MemoryBus.Master mbus

);

BinaryArbiter_MS ms(.clk(clk), .sbus0(sbus0), .sbus1(sbus1), .mbus(mbus));

BinaryArbiter_SM sm(.sbus0(sbus0), .sbus1(sbus1), .mbus(mbus));

endmodule

/* verilator lint_off DECLFILENAME */

module BinaryArbiter_MS #(

parameter MASTER_ID_WIDTH=8,

parameter ADDRESS_WIDTH=32,

parameter DATA_WIDTH=24

)(

input clk,

MemoryBus.Slave sbus0,

MemoryBus.Slave sbus1,

MemoryBus.Master mbus

);

logic lru;

logic select;

always_comb begin

select = sbus1.msValid && !(lru && sbus0.msValid);

if (select) begin

//pass from sbus0 to mbus

mbus.msID = sbus0.msID;

21

mbus.msAddress = sbus0.msAddress;

mbus.msData = sbus0.msData;

mbus.msWrite = sbus0.msWrite;

mbus.msValid = sbus0.msValid;

sbus0.msTaken = mbus.msTaken;

sbus1.msTaken = 0;

end else begin

//pass from sbus1 to mbus

mbus.msID = sbus1.msID;

mbus.msAddress = sbus1.msAddress;

mbus.msData = sbus1.msData;

mbus.msWrite = sbus1.msWrite;

mbus.msValid = sbus1.msValid;

sbus1.msTaken = mbus.msTaken;

sbus0.msTaken = 0;

end

end

always_ff @ (posedge clk) begin

if (mbus.msValid && mbus.msTaken) begin

lru <= select;

end

end

endmodule

module BinaryArbiter_SM #(

parameter MASTER_ID_WIDTH=8,

parameter ADDRESS_WIDTH=32,

parameter DATA_WIDTH=24

)(

MemoryBus.Slave sbus0,

MemoryBus.Slave sbus1,

MemoryBus.Master mbus

);

always_comb begin

sbus0.smID = mbus.smID;

sbus0.smData = mbus.smData;

sbus0.smValid = mbus.smValid;

sbus1.smID = mbus.smID;

sbus1.smData = mbus.smData;

sbus1.smValid = mbus.smValid;

mbus.smTaken = sbus0.smTaken || sbus1.smTaken;

end

endmodule

22

/* verilator lint_on DECLFILENAME */

6.3 BusToAxi.sv

/*

* Used to interface between out custom bus and a standard

* 32 bit axi4 bus.

*/

module BusToAxi(

MemoryBus.Slave bus,

// axi32 master interface

input logic arready,

input logic awready,

input logic bvalid,

input logic rlast,

input logic rvalid,

input logic wready,

input logic [1:0] bresp,

input logic [1:0] rresp,

input logic [5:0] bid,

input logic [5:0] rid,

input logic [31:0] rdata,

output logic arvalid,

output logic awvalid,

output logic bready,

output logic rready,

output logic wlast,

output logic wvalid,

output logic [1:0] arburst,

output logic [1:0] arlock,

output logic [2:0] arsize,

output logic [1:0] awburst,

output logic [1:0] awlock,

output logic [2:0] awsize,

output logic [2:0] arprot,

output logic [2:0] awprot,

output logic [31:0] araddr,

output logic [31:0] awaddr,

output logic [3:0] arcache,

output logic [3:0] arlen,

output logic [3:0] arqos,

output logic [3:0] awcache,

output logic [3:0] awlen,

output logic [3:0] awqos,

23

output logic [5:0] arid,

output logic [5:0] awid,

output logic [5:0] wid,

output logic [31:0] wdata,

output logic [3:0] wstrb

);

// convert from axi to bus

assign bus.smID = 8’(rid);

assign bus.smData = rdata[23:0];

assign bus.smValid = rvalid;

logic rx_read_ready = bus.smTaken;

// convert from bus to axi

logic write = bus.msWrite;

logic valid = bus.msValid;

logic ready = write ? awready && wready : arready;

assign bus.msTaken = valid && ready;

logic [5:0] id = bus.msID[5:0];

logic [31:0] data = 32’(bus.msData);

logic [31:0] address = {bus.msAddress[29:0], 2’b0};

// static settings

logic rx_write_ready = 1;

logic protection = 0;

logic cache = 0;

// populate all of the axi outputs

always_comb begin

arvalid = !write && valid;

awvalid = write && valid;

bready = rx_write_ready;

rready = rx_read_ready;

wlast = write && valid; // same as wvalid

wvalid = write && valid;

arburst = 2’b01;

arlock = 0;

arsize = ’b010;

awburst = 2’b01;

awlock = 0;

awsize = ’b010;

arprot = protection;

awprot = protection;

araddr = address;

awaddr = address;

24

arcache = cache;

arlen = 0;

arqos = 0;

awcache = cache;

awlen = 0; //burst length of 0

awqos = 0;

arid = id;

awid = id;

wid = id;

wdata = data;

wstrb = 4’b1111;

end

endmodule: BusToAxi

6.4 BusToAxiLite.sv

module BusToAxiLite(

input logic clock,

input logic reset,

MemoryBus.Slave bus,

// axi4lite master interface

input logic arready,

input logic awready,

input logic bvalid,

input logic rvalid,

input logic wready,

input logic [1:0] bresp,

input logic [1:0] rresp,

input logic [31:0] rdata,

output logic arvalid,

output logic awvalid,

output logic bready,

output logic rready,

output logic wvalid,

output logic [2:0] arprot,

output logic [2:0] awprot,

output logic [31:0] araddr,

output logic [31:0] awaddr,

output logic [31:0] wdata,

25

output logic [3:0] wstrb

);

logic [5:0] id;

// convert from axi to bus

assign bus.smID = 8’(id);

assign bus.smData = rdata[23:0];

assign bus.smValid = rvalid;

logic rx_read_ready = bus.smTaken;

// convert from bus to axi

logic write = bus.msWrite;

logic valid = bus.msValid;

logic ready = write ? awready && wready : arready;

assign bus.msTaken = valid && ready;

logic [31:0] data = 32’(bus.msData);

logic [31:0] address = {bus.msAddress[29:0], 2’b0};

// static settings

logic rx_write_ready = 1;

logic protection = 0;

logic cache = 0;

// populate all of the axi outputs

always_comb begin

arvalid = !write && valid;

awvalid = write && valid;

bready = rx_write_ready;

rready = rx_read_ready;

wvalid = write && valid;

arprot = protection;

awprot = protection;

araddr = address;

awaddr = address;

wdata = data;

wstrb = 4’b1111;

end

always_ff @ (posedge clock) begin

if (reset) begin

id <= 0;

26

end else begin

if (bus.msValid && !bus.msWrite && bus.msTaken) begin

id <= bus.msID[5:0];

end

end

end

endmodule

6.5 Crossbar.sv

‘timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 11/20/2019 08:56:18 PM

// Design Name:

// Module Name: Crossbar

// Project Name:

// Target Devices:

// Tool Versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module Crossbar #(

parameter MASTER_ID_WIDTH=8,

parameter ADDRESS_WIDTH=32,

parameter DATA_WIDTH=24

)(

input clk,

input rst,

MemoryBus.Slave ray_m,

MemoryBus.Slave ps,

MemoryBus.Master ray_s,

MemoryBus.Master bram,

MemoryBus.Master dram

);

Crossbar_MS ms(.clk(clk), .rst(rst), .ray_m(ray_m), .ps(ps), .ray_s(ray_s), .bram(bram), .dram(dram));

27

Crossbar_SM sm(.clk(clk), .rst(rst), .ray_m(ray_m), .ps(ps), .ray_s(ray_s), .bram(bram), .dram(dram));

endmodule

module Crossbar_MS #(

parameter MASTER_ID_WIDTH=8,

parameter ADDRESS_WIDTH=32,

parameter DATA_WIDTH=24

)(

input clk,

input rst,

MemoryBus.Slave ray_m,

MemoryBus.Slave ps,

MemoryBus.Master ray_s,

MemoryBus.Master bram,

MemoryBus.Master dram

);

localparam RAY_S_BASE = 32’h0;

localparam BRAM_BASE = 32’h100;

localparam DRAM_BASE = 32’h800;

logic ray_m_ray_s;

assign ray_m_ray_s = ray_m.msAddress < BRAM_BASE;

logic ps_ray_s;

assign ps_ray_s = ps.msAddress < BRAM_BASE;

logic ray_m_bram;

assign ray_m_bram = ray_m.msAddress < DRAM_BASE && ray_m.msAddress >= BRAM_BASE;

logic ps_bram;

assign ps_bram = ps.msAddress < DRAM_BASE && ps.msAddress >= BRAM_BASE;

logic ray_m_dram;

assign ray_m_dram = ray_m.msAddress >= DRAM_BASE;

logic ps_dram;

assign ps_dram = ps.msAddress >= DRAM_BASE;

logic ray_s_lru;

logic bram_lru;

logic dram_lru;

logic[1:0] ray_s_state;

logic[1:0] bram_state;

logic[1:0] dram_state;

localparam INACTIVE = 2’b00;

localparam PASS_RAY_M = 2’b10;

localparam PASS_PS = 2’b11;

28

localparam LRU_RAY_M = 1’b0;

localparam LRU_PS = 1’b1;

always_comb begin

//ray_s

if (ray_m.msValid && ray_m_ray_s && !(ps.msValid && ps_ray_s)) begin

//pass from ray_m to ray_s

ray_s.msID = ray_m.msID;

ray_s.msAddress = ray_m.msAddress - RAY_S_BASE;

ray_s.msData = ray_m.msData;

ray_s.msWrite = ray_m.msWrite;

ray_s.msValid = ray_m.msValid;

ray_m.msTaken = ray_s.msTaken;

if (ps_ray_s) begin

ps.msTaken = 0;

end

ray_s_state = PASS_RAY_M;

//TODO: what to do about ps taken?

end else if (!(ray_m.msValid && ray_m_ray_s) && ps.msValid && ps_ray_s) begin

//pass from ps to ray_s

ray_s.msID = ps.msID;

ray_s.msAddress = ps.msAddress - RAY_S_BASE;

ray_s.msData = ps.msData;

ray_s.msWrite = ps.msWrite;

ray_s.msValid = ps.msValid;

ps.msTaken = ray_s.msTaken;

if (ray_m_ray_s) begin

ray_m.msTaken = 0;

end

ray_s_state = PASS_PS;

end else if (ray_m.msValid && ray_m_ray_s && ps.msValid && ps_ray_s) begin

if (ray_s_lru == LRU_RAY_M) begin

//pass from ray_m to ray_s

ray_s.msID = ray_m.msID;

ray_s.msAddress = ray_m.msAddress - RAY_S_BASE;

ray_s.msData = ray_m.msData;

ray_s.msWrite = ray_m.msWrite;

ray_s.msValid = ray_m.msValid;

ray_m.msTaken = ray_s.msTaken;

ps.msTaken = 0;

ray_s_state = PASS_RAY_M;

end else begin

ray_s.msID = ps.msID;

ray_s.msAddress = ps.msAddress - RAY_S_BASE;

ray_s.msData = ps.msData;

ray_s.msWrite = ps.msWrite;

29

ray_s.msValid = ps.msValid;

ps.msTaken = ray_s.msTaken;

ray_m.msTaken = 0;

ray_s_state = PASS_PS;

end

end else begin

ray_s.msValid = 0;

ray_s_state = INACTIVE;

if (ps_ray_s) begin

ps.msTaken = 0;

end

if (ray_m_ray_s) begin

ray_m.msTaken = 0;

end

end

//bram

if (ray_m.msValid && ray_m_bram && !(ps.msValid && ps_bram)) begin

//pass from ray_m to bram

bram.msID = ray_m.msID;

bram.msAddress = ray_m.msAddress - BRAM_BASE;

bram.msData = ray_m.msData;

bram.msWrite = ray_m.msWrite;

bram.msValid = ray_m.msValid;

ray_m.msTaken = bram.msTaken;

if (ps_bram) begin

ps.msTaken = 0;

end

bram_state = PASS_RAY_M;

end else if (!(ray_m.msValid && ray_m_bram) && ps.msValid && ps_bram) begin

//pass from ps to bram

bram.msID = ps.msID;

bram.msAddress = ps.msAddress - BRAM_BASE;

bram.msData = ps.msData;

bram.msWrite = ps.msWrite;

bram.msValid = ps.msValid;

ps.msTaken = bram.msTaken;

if (ray_m_bram) begin

ray_m.msTaken = 0;

end

bram_state = PASS_PS;

end else if (ray_m.msValid && ray_m_bram && ps.msValid && ps_bram) begin

if (bram_lru == LRU_RAY_M) begin

//pass from ray_m to bram

bram.msID = ray_m.msID;

bram.msAddress = ray_m.msAddress - BRAM_BASE;

30

bram.msData = ray_m.msData;

bram.msWrite = ray_m.msWrite;

bram.msValid = ray_m.msValid;

ray_m.msTaken = bram.msTaken;

ps.msTaken = 0;

bram_state = PASS_RAY_M;

end else begin

bram.msID = ps.msID;

bram.msAddress = ps.msAddress - BRAM_BASE;

bram.msData = ps.msData;

bram.msWrite = ps.msWrite;

bram.msValid = ps.msValid;

ps.msTaken = bram.msTaken;

ray_m.msTaken = 0;

bram_state = PASS_PS;

end

end else begin

bram.msValid = 0;

bram_state = INACTIVE;

if (ps_bram) begin

ps.msTaken = 0;

end

if (ray_m_bram) begin

ray_m.msTaken = 0;

end

end

//dram

if (ray_m.msValid && ray_m_dram && !(ps.msValid && ps_dram)) begin

//pass from ray_m to dram

dram.msID = ray_m.msID;

dram.msAddress = ray_m.msAddress - DRAM_BASE;

dram.msData = ray_m.msData;

dram.msWrite = ray_m.msWrite;

dram.msValid = ray_m.msValid;

ray_m.msTaken = dram.msTaken;

if (ps_dram) begin

ps.msTaken = 0;

end

dram_state = PASS_RAY_M;

end else if (!(ray_m.msValid && ray_m_dram) && ps.msValid && ps_dram) begin

//pass from ps to dram

dram.msID = ps.msID;

dram.msAddress = ps.msAddress - DRAM_BASE;

dram.msData = ps.msData;

dram.msWrite = ps.msWrite;

31

dram.msValid = ps.msValid;

ps.msTaken = dram.msTaken;

if (ray_m_dram) begin

ray_m.msTaken = 0;

end

dram_state = PASS_PS;

end else if (ray_m.msValid && ray_m_dram && ps.msValid && ps_dram) begin

if (dram_lru == LRU_RAY_M) begin

//pass from ray_m to dram

dram.msID = ray_m.msID;

dram.msAddress = ray_m.msAddress - DRAM_BASE;

dram.msData = ray_m.msData;

dram.msWrite = ray_m.msWrite;

dram.msValid = ray_m.msValid;

ray_m.msTaken = dram.msTaken;

ps.msTaken = 0;

dram_state = PASS_RAY_M;

end else begin

dram.msID = ps.msID;

dram.msAddress = ps.msAddress - DRAM_BASE;

dram.msData = ps.msData;

dram.msWrite = ps.msWrite;

dram.msValid = ps.msValid;

ps.msTaken = dram.msTaken;

ray_m.msTaken = 0;

dram_state = PASS_PS;

end

end else begin

dram.msValid = 0;

dram_state = INACTIVE;

if (ps_dram) begin

ps.msTaken = 0;

end

if (ray_m_dram) begin

ray_m.msTaken = 0;

end

end

end

always_ff @ (posedge clk) begin

if (rst) begin

ray_s_lru <= LRU_PS;

bram_lru <= LRU_PS;

dram_lru <= LRU_PS;

end else begin

if (ray_s_state == PASS_RAY_M && ray_m.msTaken) begin

ray_s_lru <= LRU_PS;

32

end else if (ray_s_state == PASS_PS && ps.msTaken) begin

ray_s_lru <= LRU_RAY_M;

end

if (bram_state == PASS_RAY_M && ray_m.msTaken) begin

bram_lru <= LRU_PS;

end else if (bram_state == PASS_PS && ps.msTaken) begin

bram_lru <= LRU_RAY_M;

end

if (dram_state == PASS_RAY_M && ray_m.msTaken) begin

dram_lru <= LRU_PS;

end else if (dram_state == PASS_PS && ps.msTaken) begin

dram_lru <= LRU_RAY_M;

end

end

end

endmodule

module Crossbar_SM #(

parameter MASTER_ID_WIDTH=8,

parameter ADDRESS_WIDTH=32,

parameter DATA_WIDTH=24

)(

input clk,

input rst,

MemoryBus.Slave ray_m,

MemoryBus.Slave ps,

MemoryBus.Master ray_s,

MemoryBus.Master bram,

MemoryBus.Master dram

);

logic [1:0] state;

logic [1:0] mru;

localparam INACTIVE = 2’b00;

localparam PASS_RAY_S = 2’b01;

localparam PASS_BRAM = 2’b10;

localparam PASS_DRAM = 2’b11;

localparam MRU_RAY_S = 2’b00;

localparam MRU_BRAM = 2’b01;

localparam MRU_DRAM = 2’b10;

always_comb begin

if (mru == MRU_RAY_S) begin

// check bram then dram then ray s

33

if (bram.smValid) begin

ray_m.smID = bram.smID;

ray_m.smData = bram.smData;

ray_m.smValid = bram.smValid;

ps.smID = bram.smID;

ps.smData = bram.smData;

ps.smValid = bram.smValid;

bram.smTaken = ray_m.smTaken || ps.smTaken;

dram.smTaken = 0;

ray_s.smTaken = 0;

state = PASS_BRAM;

end else if (dram.smValid) begin

ray_m.smID = dram.smID;

ray_m.smData = dram.smData;

ray_m.smValid = dram.smValid;

ps.smID = dram.smID;

ps.smData = dram.smData;

ps.smValid = dram.smValid;

dram.smTaken = ray_m.smTaken || ps.smTaken;

bram.smTaken = 0;

ray_s.smTaken = 0;

state = PASS_DRAM;

end else if (ray_s.smValid) begin

ray_m.smID = ray_s.smID;

ray_m.smData = ray_s.smData;

ray_m.smValid = ray_s.smValid;

ps.smID = ray_s.smID;

ps.smData = ray_s.smData;

ps.smValid = ray_s.smValid;

ray_s.smTaken = ray_m.smTaken || ps.smTaken;

dram.smTaken = 0;

bram.smTaken = 0;

state = PASS_RAY_S;

end else begin

ray_m.smValid = 0;

ps.smValid = 0;

state = INACTIVE;

end

end else if (mru == MRU_BRAM) begin

// check dram then ray s then bram

34

if (dram.smValid) begin

ray_m.smID = dram.smID;

ray_m.smData = dram.smData;

ray_m.smValid = dram.smValid;

ps.smID = dram.smID;

ps.smData = dram.smData;

ps.smValid = dram.smValid;

dram.smTaken = ray_m.smTaken || ps.smTaken;

bram.smTaken = 0;

ray_s.smTaken = 0;

state = PASS_DRAM;

end else if (ray_s.smValid) begin

ray_m.smID = ray_s.smID;

ray_m.smData = ray_s.smData;

ray_m.smValid = ray_s.smValid;

ps.smID = ray_s.smID;

ps.smData = ray_s.smData;

ps.smValid = ray_s.smValid;

ray_s.smTaken = ray_m.smTaken || ps.smTaken;

dram.smTaken = 0;

bram.smTaken = 0;

state = PASS_RAY_S;

end else if (bram.smValid) begin

ray_m.smID = bram.smID;

ray_m.smData = bram.smData;

ray_m.smValid = bram.smValid;

ps.smID = bram.smID;

ps.smData = bram.smData;

ps.smValid = bram.smValid;

bram.smTaken = ray_m.smTaken || ps.smTaken;

dram.smTaken = 0;

ray_s.smTaken = 0;

state = PASS_BRAM;

end else begin

ray_m.smValid = 0;

ps.smValid = 0;

state = INACTIVE;

end

end else if (mru == MRU_DRAM) begin

// check ray s then bram then dram

35

if (ray_s.smValid) begin

ray_m.smID = ray_s.smID;

ray_m.smData = ray_s.smData;

ray_m.smValid = ray_s.smValid;

ps.smID = ray_s.smID;

ps.smData = ray_s.smData;

ps.smValid = ray_s.smValid;

ray_s.smTaken = ray_m.smTaken || ps.smTaken;

dram.smTaken = 0;

bram.smTaken = 0;

state = PASS_RAY_S;

end else if (bram.smValid) begin

ray_m.smID = bram.smID;

ray_m.smData = bram.smData;

ray_m.smValid = bram.smValid;

ps.smID = bram.smID;

ps.smData = bram.smData;

ps.smValid = bram.smValid;

bram.smTaken = ray_m.smTaken || ps.smTaken;

dram.smTaken = 0;

ray_s.smTaken = 0;

state = PASS_BRAM;

end else if (dram.smValid) begin

ray_m.smID = dram.smID;

ray_m.smData = dram.smData;

ray_m.smValid = dram.smValid;

ps.smID = dram.smID;

ps.smData = dram.smData;

ps.smValid = dram.smValid;

dram.smTaken = ray_m.smTaken || ps.smTaken;

bram.smTaken = 0;

ray_s.smTaken = 0;

state = PASS_DRAM;

end else begin

ray_m.smValid = 0;

ps.smValid = 0;

state = INACTIVE;

end

end

end

36

always_ff @ (posedge clk) begin

if (rst) begin

state <= INACTIVE;

mru <= MRU_RAY_S;

end

if (state == PASS_RAY_S && ray_s.smTaken) begin

mru <= MRU_RAY_S;

end else if (state == PASS_BRAM && bram.smTaken) begin

mru <= MRU_BRAM;

end else if (state == PASS_DRAM && dram.smTaken) begin

mru <= MRU_DRAM;

end

end

endmodule

6.6 MemoryBus.sv

/*

* Packet like memory interface used within the ray

* tracing system to allow for fast small transfers of data.

*/

interface MemoryBus #(

parameter MASTER_ID_WIDTH=8,

parameter ADDRESS_WIDTH=32,

parameter DATA_WIDTH=16);

/*

* ms - master to slave

*

* msID - id of the master used by the slave to

* send back a read response

*

* msReady & msValid - form a ready valid pair to

* handshake the master to slave connection

*/

logic [MASTER_ID_WIDTH-1:0] msID;

logic [ADDRESS_WIDTH-1:0] msAddress;

logic [DATA_WIDTH-1:0] msData;

logic msWrite;

logic msTaken;

logic msValid;

/*

* sm - slave to master

37

*/

logic [MASTER_ID_WIDTH-1:0] smID;

logic [DATA_WIDTH-1:0] smData;

logic smTaken;

logic smValid;

modport Master(

output msID,

output msAddress,

output msData,

output msWrite,

input msTaken,

output msValid,

input smID,

input smData,

output smTaken,

input smValid

);

modport Slave(

input msID,

input msAddress,

input msData,

input msWrite,

output msTaken,

input msValid,

output smID,

output smData,

input smTaken,

output smValid

);

endinterface: MemoryBus

6.7 MemoryMaster.sv

module MemoryMaster(

input clock,

input reset,

// first 24 bits are field, last 8 are control

input logic [31:0] in,

output logic [31:0] out,

MemoryBus.Master bus

38

);

logic [23:0] field;

enum logic [7:0] {

NONE,

ADDRESS_LOWER,

ADDRESS_UPPER,

DATA,

ID,

WRITE,

SEND,

GET_PENDING,

GET_DATA,

GET_ID,

GET_VALID,

CLEAR

} command;

assign {command, field} = in;

logic [23:0] lowerAddress;

logic [7:0] upperAddress;

assign bus.msAddress = {upperAddress, lowerAddress};

logic sent;

logic [23:0] rx_data;

logic [7:0] rx_id;

logic rx_valid;

always_comb begin

case (command) inside

GET_PENDING: out = 32’(bus.msValid);

GET_DATA: out = 32’(rx_data);

GET_ID: out = 32’(rx_id);

GET_VALID: out = 32’(rx_valid);

default: out = 32’hxxxxxxxx;

endcase

bus.smTaken = !rx_valid && (bus.smID == bus.msID);

end

always_ff @(posedge clock) begin

if (reset) begin

bus.msValid <= 0;

rx_valid <= 0;

sent <= 0;

end else begin

39

if (bus.msValid && bus.msTaken) begin

bus.msValid <= 0;

sent <= 1;

end else if (command == SEND && !sent) begin

bus.msValid <= 1;

end

if (command != SEND) begin

sent <= 0;

end

if (bus.smValid && bus.smTaken) begin

rx_data <= bus.smData;

rx_id <= bus.smID;

rx_valid <= 1;

end else if (command == CLEAR) begin

rx_valid <= 0;

end

case (command)

ADDRESS_LOWER: lowerAddress <= field;

ADDRESS_UPPER: upperAddress <= field[7:0];

DATA: bus.msData <= field;

ID: bus.msID <= field[7:0];

WRITE: bus.msWrite <= field[0];

default: ;

endcase

end

end

endmodule: MemoryMaster

6.8 RayConfig.sv

module RayConfig #(

parameter POSITION_WIDTH=16,

parameter DATA_WIDTH=24,

parameter ADDRESS_WIDTH=32,

parameter ADDRESS=0,

parameter BASE_WIDTH=5

)(

input logic clock,

input logic reset,

output logic [ADDRESS_WIDTH-1:0] materialAddress,

40

output logic [ADDRESS_WIDTH-1:0] treeAddress,

output logic [ADDRESS_WIDTH-1:0] frameAddress,

output logic [POSITION_WIDTH-1:0] cameraQ [2:0],

output logic signed [POSITION_WIDTH-1:0] cameraV [2:0],

output logic signed [POSITION_WIDTH-1:0] cameraX [2:0],

output logic signed [POSITION_WIDTH-1:0] cameraY [2:0],

output logic [11:0] width,

output logic [11:0] height,

output logic start,

input logic ready,

input logic busy,

output logic flush,

output logic resetRT,

output logic normalize,

output logic interrupt,

MemoryBus.Slave bus

);

logic lastBusy;

logic recieved;

logic sent;

logic queuedTransaction;

always_comb begin

bus.msTaken = {bus.msAddress[ADDRESS_WIDTH-1:BASE_WIDTH], BASE_WIDTH’(0)} == ADDRESS

&& bus.msValid

&& !queuedTransaction;

bus.smValid = queuedTransaction;

recieved = bus.msValid && bus.msTaken;

sent = bus.smValid && bus.smTaken;

if (recieved && bus.msWrite && bus.msAddress[BASE_WIDTH-1:0] == 0) begin

start = bus.msData[0];

flush = bus.msData[3];

resetRT = bus.msData[4];

end else begin

start = 0;

flush = 0;

resetRT = reset;

41

end

interrupt = !busy && lastBusy;

end

always_ff @(posedge clock) begin

lastBusy <= busy;

if (reset) begin

queuedTransaction <= 0;

normalize <= 0;

end else if (queuedTransaction) begin

if (sent) begin

queuedTransaction <= 0;

end

end else if (recieved && bus.msWrite) begin

case (bus.msAddress[BASE_WIDTH-1:0])

’h0: normalize <= bus.msData[5];

’h1: materialAddress <= {bus.msData, 8’b0};

’h2: treeAddress <= {bus.msData, 8’b0};

’h3: frameAddress <= {bus.msData, 8’b0};

’h4: cameraQ[0] <= POSITION_WIDTH’(bus.msData);

’h5: cameraQ[1] <= POSITION_WIDTH’(bus.msData);

’h6: cameraQ[2] <= POSITION_WIDTH’(bus.msData);

’h7: cameraV[0] <= POSITION_WIDTH’(bus.msData);

’h8: cameraV[1] <= POSITION_WIDTH’(bus.msData);

’h9: cameraV[2] <= POSITION_WIDTH’(bus.msData);

’ha: cameraX[0] <= POSITION_WIDTH’(bus.msData);

’hb: cameraX[1] <= POSITION_WIDTH’(bus.msData);

’hc: cameraX[2] <= POSITION_WIDTH’(bus.msData);

’hd: cameraY[0] <= POSITION_WIDTH’(bus.msData);

’he: cameraY[1] <= POSITION_WIDTH’(bus.msData);

’hf: cameraY[2] <= POSITION_WIDTH’(bus.msData);

’h10: width <= 12’(bus.msData);

’h11: height <= 12’(bus.msData);

endcase

end else if (recieved && !bus.msWrite) begin

case (bus.msAddress[BASE_WIDTH-1:0])

’h0: bus.smData <= DATA_WIDTH’({normalize, 2’b0, busy, ready, 1’b0});

’h1: bus.smData <= materialAddress[31:8];

’h2: bus.smData <= treeAddress[31:8];

’h3: bus.smData <= frameAddress[31:8];

’h4: bus.smData <= DATA_WIDTH’(cameraQ[0]);

’h5: bus.smData <= DATA_WIDTH’(cameraQ[1]);

’h6: bus.smData <= DATA_WIDTH’(cameraQ[2]);

’h7: bus.smData <= DATA_WIDTH’(cameraV[0]);

42

’h8: bus.smData <= DATA_WIDTH’(cameraV[1]);

’h9: bus.smData <= DATA_WIDTH’(cameraV[2]);

’ha: bus.smData <= DATA_WIDTH’(cameraX[0]);

’hb: bus.smData <= DATA_WIDTH’(cameraX[1]);

’hc: bus.smData <= DATA_WIDTH’(cameraX[2]);

’hd: bus.smData <= DATA_WIDTH’(cameraY[0]);

’he: bus.smData <= DATA_WIDTH’(cameraY[1]);

’hf: bus.smData <= DATA_WIDTH’(cameraY[2]);

’h10: bus.smData <= DATA_WIDTH’(width);

’h11: bus.smData <= DATA_WIDTH’(height);

endcase

queuedTransaction <= 1;

bus.smID <= bus.msID;

end

end

endmodule: RayConfig

6.9 RayGenerator.sv

/*

* Module for generating camera rays and driving the

* ray units.

*/

module RayGenerator #(

parameter POSITION_WIDTH=16,

parameter ADDRESS_WIDTH=32

)(

input logic clock,

input logic reset,

input logic start,

output logic busy,

output logic ready,

input logic normalize,

input logic signed [POSITION_WIDTH-1:0] cameraV [2:0],

input logic signed [POSITION_WIDTH-1:0] cameraX [2:0],

input logic signed [POSITION_WIDTH-1:0] cameraY [2:0],

input logic [11:0] width,

input logic [11:0] height,

// address of the start of the frame

input logic [ADDRESS_WIDTH-1:0] frameAddress,

43

// output to ray units

output logic [POSITION_WIDTH-1:0] rayV [2:0],

output logic [ADDRESS_WIDTH-1:0] rayAddress,

output logic rayStart,

input logic rayReady,

input logic rayBusy

);

enum logic {

IDLE,

GENERATING

} state;

logic [11:0] nextX;

logic [11:0] nextY;

logic signed [POSITION_WIDTH-1:0] genV [2:0];

logic signed [POSITION_WIDTH-1:0] regenV [2:0];

logic [11:0] x [9:0];

logic [11:0] y [9:0];

logic valid [10:0];

logic anyBusy [9:0];

logic advance;

// leading zero pairs

logic [3:0] lzp [7:0];

logic [3:0] lza [7:0];

logic [3:0] toShift;

logic h [7:0];

logic l [7:0];

logic signed [31:0] norm2;

logic signed [31:0] y0, y1, y2;

logic signed [31:0] y0_norm2, y1_norm2;

logic signed [31:0] ny0, ny1;

logic signed [31:0] ny0_y0, ny1_y1;

logic signed [31:0] ny0_norm2;

logic signed [31:0] nyy0, nyy1;

logic signed [31:0] nyy0_y0, nyy1_y1;

logic signed [31:0] nyy0_norm2;

always_comb begin

nextX = x[0] + 1;

44

nextY = y[0] + 1;

for (int i = 0; i < 8; i++) begin

h[i] = norm2[15 - 2*i];

l[i] = norm2[14 - 2*i];

end

// zero counting

for (int i = 0; i < 8; i++) begin

lzp[i] = {2’b0, !h[i] & !l[i], !h[i] & l[i]};

end

lza[7] = lzp[7];

for (int i = 6; i >= 0; i--) begin

lza[i] = lzp[i] == 2 ? lzp[i] + lza[i+1] : lzp[i];

end

toShift = (lza[0] + 1)>>1;

advance = rayReady;

rayStart = valid[10];

anyBusy[9] = rayStart;

for (int i = 0; i < 9; i++) begin

anyBusy[i] = valid[i] || anyBusy[i + 1];

end

busy = anyBusy[0] || rayBusy || state != IDLE ;

ready = state == IDLE;

end

// normalization pipeline

always_ff @(posedge clock) begin

if (reset) begin

state <= IDLE;

end else if (state == IDLE) begin

if (start) begin

state <= GENERATING;

x[0] <= 0;

y[0] <= 0;

valid[0] <= 1;

end

end else if (state == GENERATING) begin

if (advance) begin

if (nextX < width) begin

x[0] <= nextX;

end else if (nextY < height) begin

y[0] <= nextY;

45

x[0] <= 0;

end else begin

state <= IDLE;

valid[0] <= 0;

end

end

end

if (advance || reset) begin

for (int i = 0; i < 9; i++) begin

x[i + 1] <= x[i];

y[i + 1] <= y[i];

end

for (int i = 0; i < 10; i++) begin

valid[i + 1] <= reset ? 0 : valid[i];

end

// (0) 0. find vector (not carried forth)

for (int i = 0; i < 3; i++) begin

genV[i] <= 16’(cameraX[i] * signed’(x[0] - width/2))

+ 16’(cameraY[i] * signed’(height/2 - y[0]))

+ cameraV[i];

end

// (1) 1. calculate norm

norm2 <= (genV[0]*genV[0]

+ genV[1]*genV[1]

+ genV[2]*genV[2]) >> 16;

// (2) 2. find guess

y0 <= 1 << 5’(toShift);

y0_norm2 <= norm2;

// (3) 3.1 mult step 1

ny0 <= y0_norm2 * y0;

ny0_y0 <= y0;

ny0_norm2 <= y0_norm2;

// (4) 3.2 mult step 2 and subtraction

nyy0 <= (3<<16) - (ny0 * ny0_y0);

nyy0_y0 <= ny0_y0;

nyy0_norm2 <= ny0_norm2;

46

// (5) 3.3 mult step 3 and drop lower

y1 <= (nyy0_y0 * nyy0 >> 17);

y1_norm2 <= nyy0_norm2;

// (6) 4.1

ny1 <= y1_norm2 * y1;

ny1_y1 <= y1;

// (7) 4.2

nyy1 <= (3<<16) - (ny1 * ny1_y1);

nyy1_y1 <= ny1_y1;

// (8) 4.3

y2 <= (nyy1_y1 * nyy1 >> 17);

for (int i = 0; i < 3; i++) begin

regenV[i] <= 16’(cameraX[i] * signed’(x[8] - width/2))

+ 16’(cameraY[i] * signed’(height/2 - y[8]))

+ cameraV[i];

end

// (9) regenerate ray

for (int i = 0; i < 3; i++) begin

rayV[i] <= normalize ? 16’(y2 * regenV[i] * 15 / 16) : regenV[i];

end

rayAddress <= ADDRESS_WIDTH’(x[9]) + y[9]*width + frameAddress;

end

end

if (0) begin

always_ff @(posedge clock) begin

$display("state: %d, advance: %b", state, advance);

for (int i = 0; i < 10; i++) begin

$display("%d = x: %d, y: %d, valid: %d", i, x[i], y[i], valid[i]);

end

$display("(2) y0: %d, norm2: %d, lza: %d", y0, y0_norm2, lza[0]);

$display("(2.lz) a: {%d, %d, %d, %d, %d, %d, %d, %d}, p: {%d, %d, %d, %d, %d, %d, %d, %d}",

lza[0], lza[1], lza[2], lza[3], lza[4], lza[5], lza[6], lza[7],

lzp[0], lzp[1], lzp[2], lzp[3], lzp[4], lzp[5], lzp[6], lzp[7]);

$display("(2.hl) h: {%d, %d, %d, %d, %d, %d, %d, %d}, l: {%d, %d, %d, %d, %d, %d, %d, %d}",

h[0], h[1], h[2], h[3], h[4], h[5], h[6], h[7],

l[0], l[1], l[2], l[3], l[4], l[5], l[6], l[7]);

$display("(3) ny0: %d, y0: %d, norm2: %d", ny0, ny0_y0, ny0_norm2);

47

$display("(4) nyy0: %d, y0: %d, norm2: %d", nyy0, nyy0_y0, nyy0_norm2);

$display("(5) y1: %d, norm2: %d", y1, y1_norm2);

$display("(6) ny1: %d, y1: %d", ny1, ny1_y1);

$display("(7) nyy1: %d, y1: %d", nyy1, nyy1_y1);

$display("(8) y2: %d, regenV: {%d, %d, %d}",

y2, regenV[0], regenV[1], regenV[2]);

$display("(9) valid: %d, rayV: {%d, %d, %d}, address: %d\n",

valid[10], rayV[0], rayV[1], rayV[2], rayAddress);

end

end

endmodule: RayGenerator

6.10 RayMemory.sv

module RayMemory #(

parameter POSITION_WIDTH=16,

parameter DATA_WIDTH=24,

parameter ADDRESS_WIDTH=32,

parameter MASTER_ID=0,

parameter MATERIAL_ADDRESS_WIDTH=8

)(

input clock,

input reset,

// These addresses are the base addresses

// used for finding the data structures in

// memory. They are expected to remain constant

// while the module is in use.

input logic [ADDRESS_WIDTH-1:0] materialAddress,

input logic [ADDRESS_WIDTH-1:0] treeAddress,

// flush out the octree caching, should only be

// called when the system is idleing.

input logic flush,

// Control signal to start traversing the octree and find

// the depth and material at the position.

input logic traverse,

input logic outOfBounds,

input logic [POSITION_WIDTH-1:0] position [2:0],

// Depth in the octree where 0 is the root node, and

// each addition number is one node further down in the

48

// tree. Used to calculate the bounding box of the leaf

// node.

output logic [3:0] depth,

// Material properties at that leaf node. Currently this

// width is limited to a single data width, but it can be

// easily extended in the future.

output logic [DATA_WIDTH-1:0] material,

// Control signal used to write a ’pixel’ pixel to pixelAddress

input logic writePixel,

input logic [23:0] pixel,

input logic [ADDRESS_WIDTH-1:0] pixelAddress,

output logic ready,

MemoryBus.Master bus

);

parameter TREE_OCTANT_SELECT = 3;

parameter TREE_NODE_ADDRESS_SIZE = DATA_WIDTH;

parameter MATERIAL_MASK_SIZE = DATA_WIDTH - MATERIAL_ADDRESS_WIDTH;

// IDLE - system is ready for a new command

//

// PIXEL_SEND - used to potentially extend the

// signal if it is not ready to immediatly be

// sent, then turn off valid once it is

//

// TRAVERSE_SEND - similar to pixel send

//

// TRAVERSE_RECIEVE - wait on requested data

//

// MARTERIAL_(SEND/RECIEVE) - similar to TRAVERSE

enum logic[2:0] {

IDLE,

CACHE_SEARCH,

PIXEL_SEND,

TRAVERSE_SEND,

TRAVERSE_RECIEVE,

MATERIAL_SEND,

MATERIAL_RECIEVE

} state;

// used to select the correct octant from an octree node

logic [TREE_OCTANT_SELECT-1:0] octantSelect;

49

logic [POSITION_WIDTH-1:0] cacheQ [2:0];

logic [3:0] cacheDepth;

logic [DATA_WIDTH-1:0] cacheNode [POSITION_WIDTH-1:0];

// set whether bus is currently receiving

logic busReceiving;

logic busReceived;

logic busSending;

logic busSent;

logic [3:0] dSelect;

always_comb begin

ready = state == IDLE;

/* verilator lint_off WIDTH */

bus.msID = MASTER_ID;

/* verilator lint_on WIDTH */

// selecting the bits at depth, then packing them

// into a value that will be used to select the octant

// in each octree node

dSelect = 4’(POSITION_WIDTH - 1) - depth;

octantSelect =

{

position[2][dSelect],

position[1][dSelect],

position[0][dSelect]

};

busReceiving =

state == TRAVERSE_RECIEVE

|| state == MATERIAL_RECIEVE;

/* verilator lint_off WIDTH */

bus.smTaken =

busReceiving

&& (bus.smID == MASTER_ID)

&& bus.smValid;

busReceived = bus.smTaken && bus.smValid;

/* verilator lint_on WIDTH */

busSending =

state == TRAVERSE_SEND

|| state == MATERIAL_SEND

|| state == PIXEL_SEND;

50

bus.msValid = busSending;

busSent = bus.msTaken && bus.msValid;

end

always_ff @(posedge clock) begin

if (reset) begin

state <= IDLE;

cacheDepth <= 0;

end else if (flush) begin

cacheDepth <= 0;

end else if (state == IDLE) begin

if (writePixel) begin

state <= PIXEL_SEND;

bus.msData <= DATA_WIDTH’(pixel);

bus.msAddress <= pixelAddress;

bus.msWrite <= 1;

end else if (traverse) begin

if (outOfBounds) begin

state <= MATERIAL_SEND;

bus.msAddress <= materialAddress;

end else begin

state <= CACHE_SEARCH;

depth <= 0;

end

end

end else if (state == CACHE_SEARCH) begin

if (depth >= cacheDepth

|| cacheQ[0][dSelect] != position[0][dSelect]

|| cacheQ[1][dSelect] != position[1][dSelect]

|| cacheQ[2][dSelect] != position[2][dSelect]) begin

state <= TRAVERSE_SEND;

bus.msAddress <= treeAddress + (depth == 0 ?

ADDRESS_WIDTH’(octantSelect) :

ADDRESS_WIDTH’({cacheNode[depth-1] , octantSelect}));

bus.msWrite <= 0;

end

depth <= depth + 1;

end else if (state == PIXEL_SEND) begin

if (busSent) begin

state <= IDLE;

end

end else if (state == TRAVERSE_SEND) begin

if (busSent) begin

51

state <= TRAVERSE_RECIEVE;

end

end else if (state == TRAVERSE_RECIEVE) begin

if (busReceived) begin

if (bus.smData[DATA_WIDTH-1:DATA_WIDTH-MATERIAL_MASK_SIZE] == ’1) begin

// this is a material

// check if this is spacial case 0

if (bus.smData[MATERIAL_ADDRESS_WIDTH-1:0] == 0) begin

state <= IDLE;

material <= 0;

end else begin

state <= MATERIAL_SEND;

bus.msAddress <= materialAddress +

ADDRESS_WIDTH’(bus.smData[MATERIAL_ADDRESS_WIDTH-1:0]);

end

cacheDepth <= depth - 1;

cacheQ[0] <= position[0];

cacheQ[1] <= position[1];

cacheQ[2] <= position[2];

end else begin

// this is a node

state <= TRAVERSE_SEND;

bus.msAddress <= treeAddress +

ADDRESS_WIDTH’({bus.smData, octantSelect});

// save to cache

cacheNode[depth-1] <= bus.smData;

depth <= depth + 1;

end

end

end else if (state == MATERIAL_SEND) begin

if (busSent) begin

state <= MATERIAL_RECIEVE;

end

end else if (state == MATERIAL_RECIEVE) begin

if (busReceived) begin

state <= IDLE;

material <= bus.smData;

end

end

if (0) begin

$display("state: %d, msValid: %d, msTaken: %d, msAddress: %d, msData: %d, smValid: %d, smTaken: %d, smData: %h",

state, bus.msValid, bus.msTaken, bus.msAddress, bus.msData, bus.smValid, bus.smTaken, bus.smData);

52

end

if (0) begin

$display("octant: %b, depth: %d, position: {%d, %d, %d}, cacheDepth: %d",

octantSelect, depth, position[0], position[1], position[2], cacheDepth);

end

end

endmodule: RayMemory

6.11 RayStepper.sv

/*

* This module is a deterministic ray stepper. It will take in a ray

* (a position and a direction) and an AABB then return the position

* along the ray where it just exits the bounding box.

*/

module RayStepper #(

parameter WIDTH=16

)(

input clock,

input reset,

// resets and starts new operation

// operation begins after start returns to 0

input start,

// q and v are latched when start is high

// q is the initial position

// v is the signed direction vector and must have a length

// in (sqrt(3)/2, 1). This assumption allows faster searching

input [WIDTH-1:0] q [2:0],

input [WIDTH-1:0] v [2:0],

// l and u must be held constant during the operation

// l is the lower bound on each axis

// u is the upper bound on each axis

input [WIDTH-1:0] l [2:0],

input [WIDTH-1:0] u [2:0],

// indicates that the ray exited the maximum width

output logic outOfBounds,

output logic done,

// gives the new position

output logic [WIDTH-1:0] qp [2:0]

);

logic [WIDTH-1:0] accumulator [2:0];

// 1 extra bit for to round up

53

logic signed [WIDTH:0] step [2:0];

logic signed [WIDTH-1:0] roundedStep [2:0];

// 2 extra bits for out of bounds detection

// in bounds is when 2 MSB are both zero

logic signed [WIDTH+1:0] proposedPosition [2:0];

logic signed [WIDTH+1:0] lMinusOne [2:0];

logic signed [WIDTH+1:0] uPlusOne [2:0];

logic inAABB [2:0];

logic onAABB [2:0];

always_comb begin

for (int i = 0; i < 3; i++) begin

// round if odd and positive

roundedStep[i] = step[i][WIDTH:1] +

(!step[i][WIDTH] && step[i][0] ? 1 : 0);

// sign extend the step value

proposedPosition[i] = {2’b0, accumulator[i]} +

{{2{roundedStep[i][WIDTH-1]}}, roundedStep[i]};

lMinusOne[i] = {2’b0, l[i]} - 1;

uPlusOne[i] = {2’b0, u[i]} + 1;

inAABB[i] = lMinusOne[i] <= proposedPosition[i]

&& proposedPosition[i] <= uPlusOne[i];

onAABB[i] = lMinusOne[i] == proposedPosition[i]

|| proposedPosition[i] == uPlusOne[i];

qp[i] = accumulator[i];

end

end

always_ff @(posedge clock) begin

if (reset) begin

done <= 1;

outOfBounds <= 0;

end else if (start) begin

// load registers

for (int i = 0; i < 3; i++) begin

step[i] <= {v[i], 1’b0};

accumulator[i] <= q[i];

end

// start

54

done <= 0;

outOfBounds <= 0;

end else if (!done) begin

if (0) begin

$display("on: %d, %d, %d", onAABB[0], onAABB[1], onAABB[2]);

$display("in: %d, %d, %d", inAABB[0], inAABB[1], inAABB[2]);

$display("lower: %d, %d, %d", l[0], l[1], l[2]);

$display("upper: %d, %d, %d", u[0], u[1], u[2]);

$display("working: %d, %d, %d", accumulator[0], accumulator[1], accumulator[2]);

$display("step: %d, %d, %d", step[0]/2, step[1]/2, step[2]/2);

$display("pos: %d, %d, %d\n", proposedPosition[0], proposedPosition[1], proposedPosition[2]);

end

// commit changes if they fit

if (inAABB[0] && inAABB[1] && inAABB[2]) begin

for (int i = 0; i < 3; i++) begin

accumulator[i] <= proposedPosition[i][WIDTH-1:0];

end

if (onAABB[0] || onAABB[1] || onAABB[2]) begin

done <= 1;

if (proposedPosition[0][WIDTH+1:WIDTH] != 0 ||

proposedPosition[1][WIDTH+1:WIDTH] != 0 ||

proposedPosition[2][WIDTH+1:WIDTH] != 0) begin

outOfBounds <= 1;

end

end

end

for (int i = 0; i < 3; i++) begin

step[i] <= {step[i][WIDTH], step[i][WIDTH:1]};

end

end

end

endmodule: RayStepper

6.12 RayTracer.sv

module RayTracer #(

parameter POSITION_WIDTH=16,

parameter DATA_WIDTH=24,

parameter ADDRESS_WIDTH=32,

parameter CONFIG_ADDRESS=0,

55

parameter MASTER_ID_BASE=0

)(

input logic clock,

input logic reset,

output logic interrupt,

MemoryBus.Slave configPort,

MemoryBus.Master memoryPort

);

logic [ADDRESS_WIDTH-1:0] materialAddress;

logic [ADDRESS_WIDTH-1:0] treeAddress;

logic [ADDRESS_WIDTH-1:0] frameAddress;

logic [POSITION_WIDTH-1:0] cameraQ [2:0];

logic signed [POSITION_WIDTH-1:0] cameraV [2:0];

logic signed [POSITION_WIDTH-1:0] cameraX [2:0];

logic signed [POSITION_WIDTH-1:0] cameraY [2:0];

logic [11:0] width;

logic [11:0] height;

logic start;

logic ready;

logic busy;

logic flush;

logic resetRT;

logic normalize;

RayConfig #(

.POSITION_WIDTH(POSITION_WIDTH),

.DATA_WIDTH(DATA_WIDTH),

.ADDRESS_WIDTH(ADDRESS_WIDTH),

.ADDRESS(CONFIG_ADDRESS)

) cnfg (

.clock(clock),

.reset(reset),

.materialAddress(materialAddress),

.treeAddress(treeAddress),

.frameAddress(frameAddress),

.cameraQ(cameraQ),

.cameraV(cameraV),

.cameraX(cameraX),

.cameraY(cameraY),

56

.width(width),

.height(height),

.start(start),

.ready(ready),

.busy(busy),

.flush(flush),

.resetRT(resetRT),

.normalize(normalize),

.interrupt(interrupt),

.bus(configPort));

logic [POSITION_WIDTH-1:0] rayV [2:0];

logic [ADDRESS_WIDTH-1:0] rayAddress;

logic rayStart;

logic rayReady;

logic rayBusy;

RayGenerator #(

.POSITION_WIDTH(POSITION_WIDTH),

.ADDRESS_WIDTH(ADDRESS_WIDTH)

) generator (

.clock(clock),

.reset(resetRT),

.start(start),

.busy(busy),

.ready(ready),

.normalize(normalize),

.cameraV(cameraV),

.cameraX(cameraX),

.cameraY(cameraY),

.width(width),

.height(height),

.frameAddress(frameAddress),

.rayV(rayV),

.rayAddress(rayAddress),

.rayStart(rayStart),

.rayReady(rayReady),

.rayBusy(rayBusy));

RayUnit #(

.POSITION_WIDTH(POSITION_WIDTH),

.DATA_WIDTH(DATA_WIDTH),

.ADDRESS_WIDTH(ADDRESS_WIDTH),

.MASTER_ID(MASTER_ID_BASE)

) unit (

.clock(clock),

57

.reset(resetRT),

.flush(flush),

.start(rayStart),

.busy(rayBusy),

.ready(rayReady),

.rayQ(cameraQ),

.rayV(rayV),

.pixelAddress(rayAddress),

.materialAddress(materialAddress),

.treeAddress(treeAddress),

.bus(memoryPort));

endmodule: RayTracer

6.13 RayUnit.sv

/*

* Top level container for a ray unit

*/

module RayUnit #(

parameter POSITION_WIDTH=16,

parameter DATA_WIDTH=24,

parameter ADDRESS_WIDTH=32,

parameter MASTER_ID=0

)(

input logic clock,

input logic reset,

// flush cached data

input logic flush,

// ready/valid pair for controlling ray unit

// TODO: consider seperate busy and ready signals

// so that the ray tracer management system can

// know when the system is finished with a frame.

input logic start,

output logic busy,

output logic ready,

// incoming ray position and direction

// the ray position is garunteed to remain stable

// while busy

input logic [POSITION_WIDTH-1:0] rayQ [2:0],

input logic [POSITION_WIDTH-1:0] rayV [2:0],

// pixel address to write out to, it is saved on the

58

// start signal

input logic [ADDRESS_WIDTH-1:0] pixelAddress,

// addresses for finding the material and tree

// these are garunteed to remain stable while the

// ray unit is busy

input logic [ADDRESS_WIDTH-1:0] materialAddress,

input logic [ADDRESS_WIDTH-1:0] treeAddress,

MemoryBus.Master bus

);

enum logic[2:0] {

IDLE,

STEP_START,

STEP_FINISH,

TRAVERSE_START,

TRAVERSE_FINISH,

WRITE

} state;

logic [POSITION_WIDTH-1:0] q [2:0];

logic [POSITION_WIDTH-1:0] qp [2:0];

logic [POSITION_WIDTH-1:0] v [2:0];

logic [POSITION_WIDTH-1:0] l [2:0];

logic [POSITION_WIDTH-1:0] u [2:0];

logic [POSITION_WIDTH-1:0] mask;

logic [3:0] depth;

logic step;

logic stepReady;

logic traverse;

logic traverseReady;

logic write;

logic writeReady;

logic memoryReady;

logic outOfBounds;

logic getBackground;

logic [DATA_WIDTH-1:0] material;

59

logic [DATA_WIDTH-1:0] pixel;

logic [ADDRESS_WIDTH-1:0] pixelAddressF;

always_comb begin

// find l and u

mask = (1 << (POSITION_WIDTH - depth)) - 1;

for (int i = 0; i < 3; i++) begin

l[i] = q[i] & ~mask;

u[i] = q[i] | mask;

end

write = state == WRITE;

step = state == STEP_START;

traverse = state == TRAVERSE_START;

// so that these can be decoupled later

writeReady = memoryReady;

traverseReady = memoryReady & !write;

pixel = material;

busy = state != IDLE;

ready = !busy;

end

always_ff @(posedge clock) begin

if (0) begin

$display("state: %d, traverse: %d, tReady: %d, x: %d, y: %d, z: %d", state, traverse, traverseReady, q[0], q[1], q[2]);

$display("mask: %b, x: [%d, %d], y: [%d, %d], z: [%d, %d]", mask, l[0], u[0], l[1], u[1], l[2], u[2]);

end

if (reset) begin

state <= IDLE;

end else if (state == IDLE) begin

if (start) begin

state <= TRAVERSE_START;

pixelAddressF <= pixelAddress;

for (int i = 0; i < 3; i++) begin

q[i] <= rayQ[i];

v[i] <= rayV[i];

end

getBackground <= 0;

end

60

end else if (state == TRAVERSE_START) begin

if (traverseReady) begin

state <= TRAVERSE_FINISH;

end

end else if (state == TRAVERSE_FINISH) begin

if (traverseReady) begin

if (material == 0 && !getBackground) begin

state <= STEP_START;

end else begin

state <= WRITE;

end

end

end else if (state == STEP_START) begin

if (stepReady) begin

state <= STEP_FINISH;

end

end else if (state == STEP_FINISH) begin

if (stepReady) begin

getBackground <= outOfBounds;

state <= TRAVERSE_START;

q <= qp;

end

end else if (state == WRITE) begin

if (writeReady) begin

state <= IDLE;

end

end

end

// TODO: seperate ready done interfaces

// TODO: unify signal names between modules

RayStepper#(

.WIDTH(POSITION_WIDTH)

) stepper(

.clock(clock),

.reset(reset),

.start(step),

.q(q),

.v(v),

.l(l),

.u(u),

.outOfBounds(outOfBounds),

.done(stepReady),

.qp(qp));

61

RayMemory#(

.POSITION_WIDTH(POSITION_WIDTH),

.DATA_WIDTH(DATA_WIDTH),

.ADDRESS_WIDTH(ADDRESS_WIDTH),

.MASTER_ID(MASTER_ID),

.MATERIAL_ADDRESS_WIDTH(8)

) memory(

.clock(clock),

.reset(reset),

.materialAddress(materialAddress),

.treeAddress(treeAddress),

.flush(flush),

.traverse(traverse),

.outOfBounds(getBackground),

.position(q),

.depth(depth),

.material(material),

.writePixel(write),

.pixel(pixel),

.pixelAddress(pixelAddressF),

.ready(memoryReady),

.bus(bus));

endmodule: RayUnit

6.14 System xbar.sv

‘timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 12/05/2019 05:54:29 PM

// Design Name:

// Module Name: System_xbar

// Project Name:

// Target Devices:

// Tool Versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

62

//

module System_xbar(

input logic clock,

input logic reset,

input logic [31:0] gpio_in,

output logic [31:0] gpio_out,

input logic arready,

input logic awready,

input logic bvalid,

input logic rlast,

input logic rvalid,

input logic wready,

input logic [1:0] bresp,

input logic [1:0] rresp,

input logic [5:0] bid,

input logic [5:0] rid,

input logic [31:0] rdata,

output logic arvalid,

output logic awvalid,

output logic bready,

output logic rready,

output logic wlast,

output logic wvalid,

output logic [1:0] arburst,

output logic [1:0] arlock,

output logic [2:0] arsize,

output logic [1:0] awburst,

output logic [1:0] awlock,

output logic [2:0] awsize,

output logic [2:0] arprot,

output logic [2:0] awprot,

output logic [31:0] araddr,

output logic [31:0] awaddr,

output logic [3:0] arcache,

output logic [3:0] arlen,

output logic [3:0] arqos,

output logic [3:0] awcache,

output logic [3:0] awlen,

output logic [3:0] awqos,

output logic [5:0] arid,

output logic [5:0] awid,

63

output logic [5:0] wid,

output logic [31:0] wdata,

output logic [3:0] wstrb,

input logic b_arready,

input logic b_awready,

input logic b_bvalid,

input logic b_rvalid,

input logic b_wready,

input logic [1:0] b_bresp,

input logic [1:0] b_rresp,

input logic [31:0] b_rdata,

output logic b_arvalid,

output logic b_awvalid,

output logic b_bready,

output logic b_rready,

output logic b_wvalid,

output logic [2:0] b_arprot,

output logic [2:0] b_awprot,

output logic [31:0] b_araddr,

output logic [31:0] b_awaddr,

output logic [31:0] b_wdata,

output logic [3:0] b_wstrb

);

MemoryBus#(

.DATA_WIDTH(24),

.ADDRESS_WIDTH(32),

.MASTER_ID_WIDTH(8)

) ps();

MemoryBus#(

.DATA_WIDTH(24),

.ADDRESS_WIDTH(32),

.MASTER_ID_WIDTH(8)

) ray_m();

MemoryBus#(

.DATA_WIDTH(24),

.ADDRESS_WIDTH(32),

.MASTER_ID_WIDTH(8)

) ray_s();

MemoryBus#(

.DATA_WIDTH(24),

.ADDRESS_WIDTH(32),

.MASTER_ID_WIDTH(8)

) bram_bus();

MemoryBus#(

64

.DATA_WIDTH(24),

.ADDRESS_WIDTH(32),

.MASTER_ID_WIDTH(8)

) dram_bus();

MemoryMaster mm(

.clock(clock),

.reset(reset),

.in(gpio_in),

.out(gpio_out),

.bus(ps));

Crossbar xbar (

.clk(clock),

.rst(reset),

.ray_m(ray_m),

.ps(ps),

.ray_s(ray_s),

.bram(bram_bus),

.dram(dram_bus)

);

RayTracer#(

.POSITION_WIDTH(16),

.DATA_WIDTH(24),

.ADDRESS_WIDTH(32),

.CONFIG_ADDRESS(0),

.MASTER_ID_BASE(10)

) rt(

.clock(clock),

.reset(reset),

.configPort(ray_s),

.memoryPort(ray_m)

);

BusToAxiLite bram(

.clock(clock),

.reset(reset),

.bus(bram_bus),

.arready(b_arready),

.awready(b_awready),

.bvalid(b_bvalid),

.rvalid(b_rvalid),

.wready(b_wready),

.bresp(b_bresp),

65

.rresp(b_rresp),

.rdata(b_rdata),

.arvalid(b_arvalid),

.awvalid(b_awvalid),

.bready(b_bready),

.rready(b_rready),

.wvalid(b_wvalid),

.arprot(b_arprot),

.awprot(b_awprot),

.araddr(b_araddr),

.awaddr(b_awaddr),

.wdata(b_wdata),

.wstrb(b_wstrb)

);

BusToAxi dram(

.bus(dram_bus),

.arready(arready),

.awready(awready),

.bvalid(bvalid),

.rlast(rlast),

.rvalid(rvalid),

.wready(wready),

.bresp(bresp),

.rresp(rresp),

.bid(bid),

.rid(rid),

.rdata(rdata),

.arvalid(arvalid),

.awvalid(awvalid),

.bready(bready),

.rready(rready),

.wlast(wlast),

.wvalid(wvalid),

.arburst(arburst),

.arlock(arlock),

.arsize(arsize),

.awburst(awburst),

.awlock(awlock),

.awsize(awsize),

.arprot(arprot),

.awprot(awprot),

.araddr(araddr),

66

.awaddr(awaddr),

.arcache(arcache),

.arlen(arlen),

.arqos(arqos),

.awcache(awcache),

.awlen(awlen),

.awqos(awqos),

.arid(arid),

.awid(awid),

.wid(wid),

.wdata(wdata),

.wstrb(wstrb)

);

endmodule

6.15 System xbar wrap.sv

‘timescale 1ns / 1ps

//

// Company:

// Engineer:

//

// Create Date: 12/05/2019 06:07:02 PM

// Design Name:

// Module Name: System_xbar_wrap

// Project Name:

// Target Devices:

// Tool Versions:

// Description:

//

// Dependencies:

//

// Revision:

// Revision 0.01 - File Created

// Additional Comments:

//

//

module System_xbar_wrap(

input wire clock,

input wire reset,

input wire [31:0] gpio_in,

67

output wire [31:0] gpio_out,

input wire d_arready,

input wire d_awready,

input wire d_bvalid,

input wire d_rlast,

input wire d_rvalid,

input wire d_wready,

input wire [1:0] d_bresp,

input wire [1:0] d_rresp,

input wire [5:0] d_bid,

input wire [5:0] d_rid,

input wire [31:0] d_rdata,

output wire d_arvalid,

output wire d_awvalid,

output wire d_bready,

output wire d_rready,

output wire d_wlast,

output wire d_wvalid,

output wire [1:0] d_arburst,

output wire [1:0] d_arlock,

output wire [2:0] d_arsize,

output wire [1:0] d_awburst,

output wire [1:0] d_awlock,

output wire [2:0] d_awsize,

output wire [2:0] d_arprot,

output wire [2:0] d_awprot,

output wire [31:0] d_araddr,

output wire [31:0] d_awaddr,

output wire [3:0] d_arcache,

output wire [3:0] d_arlen,

output wire [3:0] d_arqos,

output wire [3:0] d_awcache,

output wire [3:0] d_awlen,

output wire [3:0] d_awqos,

output wire [5:0] d_arid,

output wire [5:0] d_awid,

output wire [5:0] d_wid,

output wire [31:0] d_wdata,

output wire [3:0] d_wstrb,

input wire b_arready,

input wire b_awready,

input wire b_bvalid,

input wire b_rvalid,

68

input wire b_wready,

input wire [1:0] b_bresp,

input wire [1:0] b_rresp,

input wire [31:0] b_rdata,

output wire b_arvalid,

output wire b_awvalid,

output wire b_bready,

output wire b_rready,

output wire b_wvalid,

output wire [2:0] b_arprot,

output wire [2:0] b_awprot,

output wire [31:0] b_araddr,

output wire [31:0] b_awaddr,

output wire [31:0] b_wdata,

output wire [3:0] b_wstrb

);

System_xbar dut(

.clock(clock),

.reset(reset),

.gpio_in(gpio_in),

.gpio_out(gpio_out),

.arready(d_arready),

.awready(d_awready),

.bvalid(d_bvalid),

.rlast(d_rlast),

.rvalid(d_rvalid),

.wready(d_wready),

.bresp(d_bresp),

.rresp(d_rresp),

.bid(d_bid),

.rid(d_rid),

.rdata(d_rdata),

.arvalid(d_arvalid),

.awvalid(d_awvalid),

.bready(d_bready),

.rready(d_rready),

.wlast(d_wlast),

.wvalid(d_wvalid),

.arburst(d_arburst),

.arlock(d_arlock),

.arsize(d_arsize),

.awburst(d_awburst),

69

.awlock(d_awlock),

.awsize(d_awsize),

.arprot(d_arprot),

.awprot(d_awprot),

.araddr(d_araddr),

.awaddr(d_awaddr),

.arcache(d_arcache),

.arlen(d_arlen),

.arqos(d_arqos),

.awcache(d_awcache),

.awlen(d_awlen),

.awqos(d_awqos),

.arid(d_arid),

.awid(d_awid),

.wid(d_wid),

.wdata(d_wdata),

.wstrb(d_wstrb),

.b_arready(b_arready),

.b_awready(b_awready),

.b_bvalid(b_bvalid),

.b_rvalid(b_rvalid),

.b_wready(b_wready),

.b_bresp(b_bresp),

.b_rresp(b_rresp),

.b_rdata(b_rdata),

.b_arvalid(b_arvalid),

.b_awvalid(b_awvalid),

.b_bready(b_bready),

.b_rready(b_rready),

.b_wvalid(b_wvalid),

.b_arprot(b_arprot),

.b_awprot(b_awprot),

.b_araddr(b_araddr),

.b_awaddr(b_awaddr),

.b_wdata(b_wdata),

.b_wstrb(b_wstrb)

);

endmodule

70

