CGRA Acceleration of the Barnes-Hut Algorithm

Parker Huntington huntingt@mit.edu

Quan Nguyen qmn@mit.edu

Daniel Sanchez sanchez@csail .mit.edu

May 2021

Abstract

We observed that implementing tree traversal algo-
rithms on CGRAs was difficult due to the variable
amount of state required to complete the tree traver-
sal. Since tree traversals are a wide and impor-
tant class of problems, generating an implementa-
tion framework with additional support for these al-
gorithms is important.

The Barnes-Hut algorithm provides a good start-
ing point for this since it is relatively important in
astrophysics and has some nice properties that al-
low it to be used as a starting point. Starting with
previous CGRA work Fifer[5], we modify the under-
lying Barnes-Hut data structures, and add hardware
to the CGRA in order to provide an efficient and
reasonable implementation. This implementation is
about 6.3x faster in total cycles performance com-
pared to an equivalent multi-threaded CPU version,
and with some additional work can be generalized to
other more challenging problems.

1 Introduction

Many sorts of “irregular” algorithms present prob-
lems for traditional computer architectures. “Irreg-
ular” algorithms are ones for which control flow, or
data access is inconsistent. Irregular algorithms are
very important because they often involve things such
as sparse data structures which can be instrumental
in decreasing the amount of computation in a prob-
lem.

In this paper we will look at using pipeline paral-
lelism to improve the speed of the Barnes-Hut algo-

rithm [1]. This algorithm aims to efficiently calculate
the gravitational forces on each of a number of point
masses. This problem is known as the N-body prob-
lem.

In the N-body problem, since the gravitational
force from a body affects all of the others, the total
number of pairwise force calculations scales as the
square of the number of bodies. The Barnes-Hut al-
gorithm improves this by putting each object into an
octree, where the nodes of the tree contain the center
of mass of their children. An octree is a tree where
each node represents a volume split into octants that
can each contain another node or a leaf (a body). If
a node is small and far away compared to an object,
the node’s center of mass can be used instead, reduc-
ing the number of force computations. This makes
the algorithm O(nlogn) instead of the naive O(n?).

While Barnes-Hut isn’t the fastest asymptotic so-
lution to this problem, it is still important and used in
large scale supercomputer simulations of things like
planetary rings[3] and star cluster dynamics. Thus,
the Barnes-Hut algorithm has considerable utility in
accelerating beyond its use as a case study in the im-
plementation of irregular tree-traversal algorithms on

CGRAs.

We will first give a short background covering the
current architectures and their problems, before look-
ing at the architecture that this paper is based on
and other related work. Finally, we show that these
methods result in significant performance improve-
ments of 6.3x and can be generalized to other related
problems.

1.1 Technical Background

Firstly, CPUs are based around the idea that they fol-
low a thread of instructions in order. This paradigm
is inherently serial, and thus computers are limited
by their ability to quickly execute an instruction in
the thread and move onto the next. In the past,
Dennard scaling allowed chip fabrication improve-
ments to translate into faster clock speeds, and thus
faster per instruction execution. Now that things
such as short-channel effects have caused significant
frequency increases to become impractical, computer
architectures have needed to respond to continue to
increase computer performance. The overarching so-
lution to resolve this problem has been to look for par-
allelism that can be exploited to do multiple things
at the same time, and thus increase performance.

In CPUs, this has come in three flavors. The first
called instruction level parallelism (ILP) is to figure
out which instructions can be executed at the same
time, and try to resolve dependencies at run-time.
Out of Order (O0O) processors use this principle as
they can dynamically reorder instruction execution,
while still maintaining the original serial ordering in
terms of apparent results. Figuring this out, how-
ever, is complicated and the number of instructions
that can be issued every cycle is limited. The second
solution is to split the program into multiple threads
of execution, thus giving the CPU more instructions
per cycle to execute. This is called thread level par-
allelism. The final solution is where one instruction
acts on multiple pieces of data (SIMD), and is data
level parallelism.

It is important to recognize that Barnes-Hut is ac-
tually easy in the sense that the force on each body
can be calculated independently. The algorithm is
embarrassingly parallel. Thus, thread and data par-
allel implementations are actually quite easy, and the
previously mentioned solutions are sufficient, at least
at first glance. In reality, the computations are suf-
ficiently simple that the computer quickly becomes
bottle necked by its ability to access memory.

In order to understand this bottleneck, it is impor-
tant to understand cache and cache locality. In com-
puter systems, the working memory often has small
fast local copies of the most recently and frequently

L3 Cache

Figure 1: The processing elements (PEs) are tiled
across the chip. Each PE is connected to the Last
Level (L3) cache which interfaces with the external
memory. The PEs are linked together by inter-PE
queues.

used data (the cache) that is close to the CPU, etc.
If the memory accesses happen in order, then it is
easy for the computer to prefetch the memory be-
fore it is needed, preventing an expensive access to
main memory. When memory access becomes unpre-
dictable, prefetching becomes difficult. Reordering
memory accesses can then become very important to
make sure that the data is usually in the cache when
accessed. That is the case in this paper.

1.2 Fifer Architecture

Fifer is prior work that is a variation on traditional
Coarse Grain Reconfigurable Array (CGRA) archi-
tectures [5]. Similar to how a CPU consists of a
number of cores tiled across a chip, CGRAs (and
Fifer) are composed of Processing Elements (PEs)
tiled across the chip (Fig. 1). CGRAs are similar to
FPGAs but configured on a much coarser level than
LUTs, hence “Coarse Grain”.

Figure 2: Each PE has a number of different configu-
rations that it can switch between. These configura-
tions set up the switches and ALUs into a pipeline.

1.2.1 Processing Element (PE)

Each processing element is itself another mesh of even
smaller elements (Fig. 2). The difference between
the processing element and the chip overall is that
the PE acts as an atomic unit. All of its elements
either process data, or don’t during a cycle.

It is made up of a combination of switches that
route incoming data to either another switch or an
ALU. The ALUs are then configured to do a single
math operation once every cycle. These math oper-
ations don’t change like in a CPU, instead they are
set by one of several configurations that is stored in
the PE. These configurations don’t switch very fre-
quently because all of the data that is in the system
during a switch needs to be pulled out and swapped
in with the data from the other configuration.

The switching of the configurations and the asso-
ciated data is what differentiates Fifer from a regular
CGRA. Each PE is actually several virtual PEs in
essence that can swap out between each other.

This swapping action allows configurations with
different amounts of work to load balance the sys-

tem, and also allows producer configurations to buffer
work for consumer configurations on the same PE.

1.2.2 Queues

Queues are the primary means of communication
both between different processing elements and
within processing elements. Queues are critical be-
cause they provide a buffer between processing ele-
ments. By allowing a producing stage (or PE) to
work ahead, a consuming stage can have a backlog of
work that will keep it busy even if the producer stalls
for some reason.

Since Fifer and CGRAs in general also focus on a
pipeline style of execution, queues are a natural part
of the architecture.

1.2.3 Decoupled Reference Machines

Each PE also has some small Decoupled Reference
Machines (DRMs) (Fig. 2). A DRM sits between
two queues and acts like a very simple stage. This
allows enqueued values to be, in the case of Barnes-
Hut, treated as indices into an array. When the DRM
dequeues each index, it will return the memory value
at that index.

By working on the backlog of data in the queue,
they can effectively prefetch memory accesses that
will be used later.

1.2.4 Scheduling

Since PEs can have multiple configurations, a
scheduling policy is needed to determine which one to
run. The scheduling system in Fifer is a very simple
greedy scheduler. It is greedy in both that it sched-
ules stages with the largest input queues and in the
amount of time that a selected configuration runs.
A configuration will only be swapped out when it is
unable to make further progress.

This scheduling system can run into problems
where one configuration “steals” too much time on
a PE, but that is not addressed here.

1.3 Why Use Fifer?

The Fifer architecture flips the earlier CPU paradigm
of a serial list of instructions by instead having a
static set of instructions that define a number of con-
secutive operations, and data that is serially passed
from one instruction to the next. These consecutive
instructions are what form the “pipeline” of pipeline
parallelism. The parallelism comes from the ability
to process multiple pieces of data at the same time
in different pipeline stages. Compared to other ar-
chitectures, this one ultimately gives more latitude
to reorder the memory accesses and improve cache
locality, while still having good computational per-
formance.

1.4 Related Work

Besides Fifer, there has been a lot of work on the
Barnes-Hut algorithm. On of the large areas of focus
has been on GPU implementations. Unfortunately,
due to reasons explained in 3.1 it isn’t possible to
do a meaningful GPU comparison with our testing
methodology. Some of these implementations have
focused on being able to execute the full O(nlogn)
algorithm including building the tree data structures
on the GPU to avoid GPU-CPU bottlenecks[2]. Our
approach here is to instead focus on the main com-
putational portion of the algorithm.

Others have focused on improving CPU caching
characteristics to lower power consumption[4]. While
the cache is very important in this paper, the goal is
performance rather than improved power efficiency.
Additionally, this paper aims to improve the system
around the cache (the execution order and architec-
ture) rather than the cache itself.

2 Methods

We will use the Barnes-Hut algorithm and the Fifer
architecture to show how each can be modified to
work together and speed up the final result. First,
we will show some of the critical adjustments to the
algorithms data structures. Then, we will look at the
Fifer implementation. Finally, we will see how the

Fifer architecture can be augmented to further speed
up the calculation.

2.1 Barnes-Hut

When speeding up the Barnes-Hut algorithm, it is
first necessary to understand its challenges. Since
the forces on each body in Barnes-Hut can be cal-
culated separately, as noted earlier, the problem is
embarrassingly parallel. Thus, the obvious solution
would be to compute as many of them as possible at
the same time.

The problem, however, is that the force calcula-
tions are held back by the long memory access times.
The memory jumping of the octree traversal causes
the cache locality to be poor. These computations
need to be intelligently reordered to increase local-
ity. Additionally, tree traversal is traditionally a re-
cursive problem. Each recursion has an associated
stack frame which causes the memory foot print to
be variable in size (and much larger than necessary).
Doing a bunch of tree traversals in parallel would re-
quire a large variable amount state data (stacks) that
would complicate getting good cache locality. But in
a CGRA implementation, the goal is to run multi cal-
culations in parallel in a pipeline fashion. Because the
queues holding the state data for the tree traversal
computation have a fixed size, the variable amount
of state data is a big problem for efficient implemen-
tations.

2.1.1 Tree Optimization

The key observation to resolve this problem, is that
the crux of the algorithm is to look at a node, and
decide whether or not it would be accurate enough
to use its center of mass to calculate the force, or if
all of the children need to be recursed into. Thus,
when a node is visited either all of the children or
none of children are accessed, and only data from the
current node is needed. In other words, even though
there are eight children to a node, either all or none
of them are recursed into, and thus the decision is
binary.

We can use these restrictions on the octree traver-
sal to construct a “slim octree”. All of the nodes are

ylll

Figure 3: The top shows a standard octree while the
bottom a reordered one. Leaves are light blue with
the body index, while nodes are dark blue. The ar-
rows on the bottom graph show the skip locations
for each node. The dashed arrows show an exam-
ple traversal for each tree. In this example node B
was used in the force calculation, while node C was
recursed into in order to provide a more fine grain
force calculation. The 1 and 5 leaves are greyed out
because the are skipped. The dashed line on the
right of the bottom graph is the end of the array that
the graph is embedded into. Notice how the bottom
graph has a very simple left to right traversal.

sequentially ordered in an array where each node is
immediately followed by all of the hierarchy that is
under it. The node then contains a single pointer
which gives the “skip” value that steps over the hier-
archy under that node. An example transformation
of this type is give in Fig. 3.

In Fig. 3 node B can be recursed into by increment-
ing the pointer by one to body 1. If node B is used
for a calculation, its children can be skipped by tak-
ing the skip pointer to node C. This transformation
sequences the accesses (increasing array locations),
substantially decreases the node sizes, and allows the
tree traversal to be represented by the index of the
current node, not an entire stack.

This optimization does have the downside of de-
creasing the opportunity to compute sibling nodes in
parallel (this was possible before because the siblings
were all listed in the node), but since we already have
plenty of parallelism due to the many bodies, this
isn’t a problem.

2.1.2 Body Sorting

In order to increase cache locality of parallel calcula-
tions, it is helpful to sort the bodies so that adjacent
bodies tend to have very similar access patterns [2].
Fortunately, inserting the bodies into the octree has
already sorted them to an extent. Bodies that are
close together in the tree hierarchy will tend to be
close together in space. Thus, we can very cheaply
read out the tree in order, and swap the objects to
match the ordering (Fig. 4).

2.1.3 Tiling

In a two dimensional representation of the memory
accesses where one axis is the node index, and the
other the body index, we can imagine some rectangle
that encloses some number of computations. This
equates to the tiling multiprocessing technique. By
tuning the tile size, we can ensure that its associated
data will fit into the cache. And thus cache locality
is improved.

In a more concrete sense, this can be implemented
in a CPU by interrupting the tree traversal at regular
checkpoints, and then switching to another object’s

BEFL b

Figure 4: These images show memory accesses in
white. The horizontal axis are tree accesses while
the vertical access shows the body breakdown. The
top image is unprocessed, while the bottom is sorted.
Notice how the bottom image has much more struc-
ture to it. We can exploit this structure to improve
data locality.

tree traversal. Even though this adds a roughly 30%
overhead in terms of the number of instructions, if
the number of objects being switched between, and
the checkpoint intervals are chosen carefully, then the
working memory can be optimized to fit into either
the L1 or L2 cache.

While this technique isn’t directly applicable to the
CGRA implementation, the strategy is similar and it
is important for providing a fair CPU baseline.

2.2 Combining Fifer and Barnes-Hut

CGRA style architectures can have very large data
through-puts since each ALU of a PE can be doing a
math operation every single cycle. This means that
cache locality for Fifer is still the driving factor for
performance as it is in other architectures. In other
words, there is still a memory bottleneck.

The first step for implementing Barnes-Hut on
Fifer is to look at how the computational state can
be represented. Each of the N-bodies has an associ-
ated index to identify, as well as the state from the
tree-traversal. The tree traversal state is composed
of the running gradient (force) calculation, as well
as the location in the tree (node index). This can
be expressed as something that we will call the ING
(Index Node Gradient):

struct ING {

uint32_t index;
uint32_t node;
Vec3 gradient;

};

The execution state is then the set of all of the
INGs that correspond to each of the N bodies.

We can now talk about the action of the compute
kernel on a single ING element. The first observation
is trivially that the indez field will always remain the
same, since one object will never become another.
The second observation is that node field will either
increment by one (continue the pre-order traversal)
or it will be set to skip (skip all of the children).

The naive CPU style of executing this would be
to reapply the computation operation to an ING
struct until the computation hits the end of the tree.
The CGRA, however, manages a pool of ING structs
where each go through the computation operation in

a pipeline fashion. These pools are equivalent to the
tiling technique presented in 2.1.3. Note, however,
that this doesn’t change the Barnes-Hut algorithm in
any manner. Rather, what it does is define a frame-
work on how to intelligently reorder the computations
in the Barnes-Hut algorithm.

To put this implementation in more concrete
terms, in Fifer we create two stages, a computa-
tion stage and a management stage. The computa-
tion stage is the kernel of the Barnes-Hut algorithm
that operates on the pool of ING structs (Fig. 5).
The management stage simply takes the structs com-
ing out of the compute stage and feeds them back
and fetches the node unless the node field indicates
that the computation for that particular object has
reached the end of the tree. Specific to Fifer, these
two stages live on the same PE, which re-configures
between the two different stages as needed.

Since these two stages are connected to each other
by queues, the ING structs are never reordered and
always processed in a round robin fashion. When a
pool of structs starts, each are at node 0. Thus, all
of the nodes in the pool can reuse the same memory
access which enormously reduces the memory bot-
tleneck. Combined with the higher computational
throughput of the CGRA, this is what makes the
Fifer implementation faster. After node 0, however,
the set of node positions in the tree will diverge over
time as each object will have different amounts of
computations. This leads to less cache locality and
causes performance to degrade within the pool.

2.3 Hardware Additions to Fifer

The divergence problem within a pool can be solved
by adding hardware to Fifer to schedule (or reorder)
computations so that the pool isn’t spread out over
too large of a range of node values at any one point in
time. This is accomplished by adding a priority queue
(or sorter) that sorts the output of the compute stage
for the ING with the smallest node field within some
window.

This sorting hardware needs to be very high
throughput (preferably 1 value per cycle), so some of
the more complicated priority queue designs aren’t
applicable in this case. For this paper we settled on

Compute ING, + node

compute (ING, node) {
body = bodies[ING.index];

if (node is leaf) {

// if leaf, calculate force
ING.gradient += force(node,
ING.node++;

} else if (body far from small node) {
// if node is used, skip children
ING.gradient += force(node, body);
ING.node = node.skip;

} else {

// else recurse into node’s children
ING.node++;

body) ;

}

return ING;

Figure 5: The full flow of the Fifer implementation
is shown on top with simplified pseudocode for the
compute stage given below. In the upper diagram, an
ING struct leaves the mangement stage before going
to a DRM that fetches the corresponding tree node.
The compute stage then uses the fetched node and
the ING struct to do one compute pass, returning
the next ING struct. The sorter then schedules these
and passes on the ING structs in a different order to
the management stage. If the ING struct indicates
that a traversal has reached the end of the tree, then
it is retired.

Configuration Cycles ‘ Speedup ‘
simple 15,074,108,773 | 0.23x
tiled 13,196,453,078 | 0.26x
4-core 4-thread 3,402,018,023 1.00x
4-PE Fifer 558,817,204 | 6.00x
4PE Fifer w/ sort | 537,047,738 | 6.33x

Table 1: Table comparing the performance results
from different test configurations for a run size of
262,144 bodies. “4-core 4-thread” is taken to be the
baseline since it is the best effort version on the CPU.

a size of 16 entries, which appears reasonable when
pipelined into 2 stages.

One of the finer details, however, deals with how
Fifer needs to interact with the priority queue. The
priority queue is useless if it only has a single en-
try, but it also needs to output values into the down-
stream queue so that the management stage can be
scheduled. If the priority queue tries to greedily fill
itself up, then the system will deadlock when the
number of INGs has fallen bellow 16 (due to objects
finishing the traversal and retiring).

The policy to resolve this problem is as follows:
dequeue from the priority queue when there is space
in the output, and either the output queue is empty
or the priority queue is full. This policy takes care
of the edge conditions while also trying to keep the
queue full to maximize its effective sorting window.

3 Evaluation

We evaluated the performance of both the Fifer im-
plementation and the CPU implementation using the
Fifer simulation software. At a high level, the cy-
cle based simulator is based on and validated for a
high performance OoO (Out of Order) CPU. The
Fifer simulator uses the ILP in a program combined
with the per operation uop requirement to gener-
ate a latency value for each stage pass. This tech-
nique allows moderately modified x86-64 programs
to run as if they had an equivalent Fifer implemen-
tation. Thus, the various implementations can share
the same code base, and all of the applicable opti-

mizations are shared as much as possible. We also
use the exact same data structures between imple-
mentations and compare the outputs using a bit-wise
comparison for equality.

The test data for the benchmarks is generated us-
ing the Plummer model [6]. While this model isn’t
accurate in terms of star clusters, it is commonly
used and should work just fine for comparative re-
sults. The randomization seed for each benchmark
is also held constant so that the final results are as
consistent as possible.

For a system of around 262k bodies, we can look at
the performance improvements between each of the
optimizations presented (Tab. 1). There are a couple
of interesting points to note in the results.

First, the “4-core 4-thread” version is only about
3.88 times faster than the single threaded version
even though it has 16 times as many threads. This is
due to the fact that having multiple threads per core
doesn’t help when each core is memory bottlenecked
by its associated L1 and L2 caches. Additionally,
since the L3 cache serves as the shared LLC in this
system, and the working set of the data is is at least
twice as large, even though the L3 cache is scaled up
for the 4-core version, cache conflicts between differ-
ent cores can still cause issues. There is also a greater
chance for work to not be shared as equally among
the 16 threads. This issue is exacerbated by the sort-
ing preprocessing steps described earlier and can be
seen in Fig. 4.

Second, while the addition of hardware sorting only
adds a minor improvement of around 4-10%, it has
a fairly small associated cost. Additionally, there
is probably room for significant improvement in the
reordering and scheduling hardware. The current
sorter has simple policies for determining when to
pass values that limit its ability to sort between dif-
ferent passes of the compute kernel. The sorter also
becomes saturated in cases where there is only a small
population of elements that need to be heavily prior-
itized over the rest of the pool.

If we recall the design of the Fifer implementation,
we have a pool size that can be tuned. This pa-
rameter is important because it dictates the amount
of queue storage needed within a PE since the en-
tire pool of ING structs is stored within the queues.

le9

3.0
—— Unsorted

Sorted
2.5 1

2.0 4

Cycles

1.0 A

0.5

0.0

10! 102 103

Pool Size

Figure 6: Shown above is the number of cycles vs.
the pool size for a single PE fifer implementation
with 100k bodies. The optimum point, both with
and without hardware sorting, is at a pool size of
256.

Looking at the tuning in Fig. 6, however, also offers
some insights into the system. The optimal point
here is a pool size of 256. Moving to the left of that
value increases the cycle count due to the increased
overhead of switching between the compute and man-
agement stages as well as the decreased memory ac-
cess amortization over the pool. Increasing the pool
size beyond the optimization point also increases the
cycle count due to the pool straining the cache.

Additionally, the sorting hardware and ING-style
execution can be generalized to some other types of
tree traversal algorithms. For example, in a tree
traversal that can generate more tree traversals, new
ING-style structs can be created and added to the
execution pool when there is room.

3.1 Limitations

Since the benchmarks were written specifically for
this purpose, they have a couple of simplifications
that wouldn’t be appropriate for actual use. The gra-
dients, for example, are not accumulated in a numer-
ically stable manner (we use a simple running total),
although this problem could be solved without too
much effort. Additionally, these systems are written
using 32-bit floating point numbers. 64-bit numbers
would exacerbate the memory bottleneck, however,
so the results in this paper should generalize without
issue. The benchmarks do calculate the reciprocal
square root using full precision, so the computational
overhead isn’t unfairly low.

The simulation of the CPU style benchmarks does
lack hardware prefetching, however, the story here is
rather complicated. We can run the CPU benchmark
(single thread in this case) natively on the CPU and
capture the prefetching behaviour using the hard-
ware performance counters. This reveals that there
is a significant amount of prefetching that the hard-
ware is doing. About 70% of all requests to the L2
cache are prefetched, and very few prefetches turn
out to be useless. Disabling the hardware prefetch-
ers, however, only affects the total cycle performance
to within 0.2%. It appears that the prefetchers prob-
ably evict just as much data as they prefetch, and
thus have no net effect on the total cycles. Consid-
ering the over 200% increase in traffic to the L2 that
these generate, their presence is probably detrimen-
tal to the power consumption if anything. Thus, we
conclude that our CPU baselines are not affected by
this factor.

Additionally, the simulation does not implement
SIMD instructions. The general observation from the
simulation results, however, is that the system is lim-
ited by the memory bandwidth which isn’t SIMD’s
strong point in terms of acceleration.

In terms of Fifer, while we have created an oper-
ation graph that could be implemented on a CGRA
PE, the compute stage of the Barnes-Hut algorithm
is rather large (even though Barnes-Hut is relatively
simple) so the required PE size may be large or unten-
able, especially if the compute kernel is made more
complex. This problem could be solved by adding

more stages, but that would, of course, slow down
the execution due to the need to time multiplex three
stages instead of two.

The last major limitation is that the simulator isn’t
able to simulate GPUs. This is due to the lack of a
clear way to map an x86-64 program to the GPU
style execution in a sensible and reasonable to use
method. While a different simulator could be used,
it wouldn’t share the same code base to the degree of
the current system, and thus would require a signifi-
cant time investment.

4 Conclusion

In this paper, we showed that CGRAs have the po-
tential to accelerate the Barnes-Hut algorithm. Some
of our enabling optimization techniques are also ap-
plicable to implementations besides CGRAs. These
techniques could allow either faster or more complex
simulations of large gravitational systems like plan-
etary rings, to the benefit of astrophysics and other
related fields. Our implementation can also serve as
a framework to be expanded on for other less well be-
having tree traversal algorithms that include compli-
cations such as recursively generated tree traversals.

References

[1] Josh Barnes and Piet Hut. “A hierarchical O(N
log N) force-calculation algorithm”. In: Nature
324.6096 (1986), pp. 446-449. por: 10. 1038/
324446a0. URL: https://doi.org/10.1038/
324446a0.

[2] Martin Burtscher and Keshav Pingali. “An Ef-
ficient CUDA 6 Implementation of the Tree-
Based Barnes Hut n-Body Algorithm”. In: GPU
Computing Gems Emerald Edition. MORGAN
KAUFMANN PUBLISHER, 2011, pp. 75-92.

[3] Masaki Iwasawa et al. Implementation and
Performance of Barnes-Hut N-body algorithm
on FExtreme-scale Heterogeneous Many-core
Architectures. 2019. arXiv: 1907 02289
[astro-ph.IM].

10

[4]

Konrad Malkowski, Padma Raghavan, and Mary
Jane Irwin. “Toward a Power Efficient Computer
Architecture for Barnes-Hut N-Body Simula-
tions”. In: Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing. SC ’06. Tampa,
Florida: Association for Computing Machinery,
2006, 146—es. 1SBN: 0769527000. poI: 10.1145/
1188455.1188607. URL: https://doi.org/10.
1145/1188455.1188607.

Quan Nguyen and Daniel Sanchez. “Fifer:
Practical Acceleration of Irregular Applications
on Reconfigurable Architectures”. In: UNPUB-
LISHED (2021).

H. C. Plummer. “On the Problem of Distribu-
tion in Globular Star Clusters: (Plate 8.)” In:
Monthly Notices of the Royal Astronomical So-
ciety 71.5 (Mar. 1911), pp. 460-470. 1SSN: 0035-
8711. por: 10.1093/mnras/71.5.460. eprint:
https://academic.oup.com/mnras/article-
pdf/71/5/460/2937497 /mnras71-0460 . pdf.
URL: https://doi.org/10.1093/mnras/71.5.
460.

